Bilgi Yonetimi
Dergisi
Cilt: 6 Sayr: 2 Yil: 2023
https://dergipark.org.tr/tr/pub/by

[=] % el
H

O]
Peer-Reviewed Articles
Research Article

Article Info

Date submitted: 23.04.2023
Date accepted: 11.07.2023
Date published: 31.12.2023

Makale Bilgisi

Gonderildigi tarih:  23.04.2023
Kabul tarihi: 11.07.2023
Yaymnlanma tarihi: 31.12.2023

Keywords
Object-Oriented Model,
Information Management,
Information System
Anahtar Sozciikler
Nesne Yonelimli Model, Bilgi
Yonetimi, Bilgi Sistemi

DOI Numarast
10.33721/by.1270095

ORCID
0000-0003-0844-8160

Managing Business Data with An Object-Oriented
Approach

Nesne Yonelimli Bir Yaklasimla Is Verilerinin Yonetimi

Cem Ufuk BAYTAR

Istanbul Topkap: Universitesi, [ISBF, Yénetim Bilisim Sistemleri Bolimii
Ogretim Uyesi, ufukbaytar@topkapi.edu.tr

Abstract

Nowadays, managing data is so vital for companies in every sector to compete
with competitors. Databases are the critical part of information systems to
process raw data. Some of them are open source code and some of them are
commercial ones. In this study, the main question is that how business data is
managed based on the concept of persistence without a need to connect to a
database management system to make a contribution for the problem of
impedance mismatch. To find the answer of this question, a persistent object-
oriented model has been proposed to establish an infrastructure for especially
small companies to manage business data. When designing this model, the
source of inspiration has been the concepts of persistence and delegation.
Delegation contributes to diminish the effects of code scattering and code
tangling problems and to increase modularity. It also plays an important role in
the model in order to build an interface between users and the system.
Serialization methodology has been applied to save data represented by
persistent objects. C++ programming language was used for implementation of
the model. The reliability of the proposed model has been proved based on
Chidamber and Kemerer’s metric set to measure object-oriented programming.
Consequently, the first version of the model has been implemented without
needing any database management system. It has also provided valuable
functionalities, i.e., saving or loading data, listing data, describing data,
inserting data based on object-oriented concepts. In the future, the researchers
of the same field can make contributions for developing this model by
implementing new features to make it more powerful technically.

Oz

Giintimiizde, verileri yonetmek her sektordeki sirketlerin rakipleriyle rekabet
edebilmesi i¢in ¢ok dnemlidir. Veritabanlar1 ham verilerin islenmesi agisindan
bilgi sistemlerinin kritik bir parcasidir. Bu veritabanlarinin bazilari agik kaynak
kodlu, bazilar1 ise ticari kodlardir. Bu ¢alismada temel soru, is verisinin bir
veritabani yonetim sistemine baglant1 gereksinimi olmadan nesnelerin kalicilig
kavramina dayandirilarak empedans uyumsuzlugu problemine katki saglamak
icin nasil yodnetilebilecegidir. Bu sorunun cevabii bulabilmek amaciyla,
ozellikle kiigiik sirketlerin is verilerini yonetecekleri bir altyapi olusturmak
iizere kalicilastirilmis nesne yonelimli bir model oOnerilmistir. Bu modeli
tasarlarken ilham kaynagi delegasyon ve nesnelerin kaliciligi kavramlari
olmustur. Delegasyon, nesne yonelimli kodlamada kod sagilmasi ve kod
karigtirma sorunlarinin etkilerinin azaltilmasina ve modiilerligin artmasina
katkida bulunur. Ayrica, delegasyon kullanicilar ve sistem arasinda bir ara yiiz
olusturulmasinda model icin Onemli bir rol oynamaktadir. Serilestirme
metodolojisi, kalict nesneler tarafindan temsil edilen verileri kaydetmek igin
uygulanmistir. Modelin uygulamasinda C++ programlama dili kullanilmustir.
Onerilen modelin giivenilirligi, Chidamber ve Kemerer'in nesne y&nelimli
programlamay1 Olgmek i¢in belirledigi metrikler kiimesine dayanarak
kanitlanmistir. Sonug olarak, modelin ilk hali herhangi bir veritaban1 yonetim
sistemine ihtiya¢ duymadan uygulanmistir.

*The research and publication process of this article was carried out in accordance with "Research and Publication Ethics".


mailto:ufukbaytar@topkapi.edu.tr
https://dergipark.org.tr/tr/pub/by

Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363

Model, verileri saklama veya yiikleme, verileri listeleme, verileri tanimlama, veri ekleme gibi nesne yonelimli
kavramlara dayali degerli islevler de saglamistir. Gelecekte, bu alandaki arastirmacilar modeli teknik olarak daha
giiclii hale getirecek yeni 6zellikleri uygulayarak modelin gelismesine katki saglayabilirler.

1. Introduction

Relational databases need the relational data model to save the data. This model is suitable for storing
structured data. MySQL, PostgreSQL, and Oracle are some examples of a relational databases.
NoSQL databases have not referential integrity constraint among data objects. They can operate in a
distributed architecture (Lajam and Mohammed, 2022). They are non-relational databases because
their data models, i.e., key-value, document, column family, and graph data model, are different from
the relational data model (Moniruzzaman and Hossain, 2013). An object-oriented database (OODB) is
a structure that is able to manage data represented by objects. In addition, it is based on an object-
oriented model (OOM). In literature, there are studies about implementing of OOMs or OODBs. Some
of the related works are summarized in Table 1.

Table 1
Related Works

Work Subject / Related to Concepts/Tools
Bergesio OOM for orchestrating smart devices Inheritance, polymorphism
etal.,
2017
Zuo et Developing open source data center package Modelica
al., 2019
Ma et How to store OWL ontologies in object-oriented Object-oriented database
al., 2015 databases
Liu et OOM to navigate blind people in outdoor space Obijective orientation idea
al., 2015
Coruhlu Modelling of object-oriented land division Geographical database
and
Yildiz,
2017
Schubert Using a graph database for integration of business Graph database
et al, objects from heterogenous Business Information
2022 Systems
Truicaet Document-Oriented Database Management Systems XML, JSON
al., 2021
Candel Metamodel for NoSQL and relational databases U-Schema, NoSQL
etal.,
2022

There is an important problem between relational data model and object-oriented applications. It is
called impedance mismatch or object-relational impedance mismatch. It occurs when trying to access
a relational database from an object-oriented application since there is a gap between the object-
oriented model of an application and the relational model in a database management system (Lajam
and Mohammed, 2022). A persistent object store (POS) is useful to prevent the problem of impedance
mismatch (Cortes et al., 2019).

In this study, a persistent object-oriented model was introduced to manage business data in a
consistent and efficient way. For this purpose; i) the proposed OOM has been presented based on
persistence and delegation concepts and serialization methodology, ii) the model has been
implemented with C++ programming language and iii) the model does not require connecting to a
database management system iv) the model contributes to the problem of impedance mismatch.

The contributions of this study to the literature are i) focusing on concepts of data persistence and
persistent object store, ii) how to use the concept delegation to create the effect of inheritance, iii) how
to implement an interface (like interface concept in Java) by using the delegation concept instead of

349



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363
abstract functions, iv) pointing out how to reduce effects of code scattering and code tangling

problems in OOP and v) applying OOP metrics (CK Metrics) to verify that the OOM is reliable.

The 2™ part of the study is about the concepts that is necessary in the development of the model,
implementation of the proposed model has been explained in Chapter 3. Chapter 4 includes findings
and the validation of the model. Finally, results obtained from the study are given in Chapter 5.

2. Summary of Literature

This part of the study includes information about data persistence, persistent object store, object-
oriented programming concepts, for example, composition, delegation, vector and serialization and
studies about persistent data models.

A database design includes conceptual, logical, and physical models to make sure that the structure to
store data will be built in a suitable way and will meet the requirements of a database system. A
conceptual design converts necessary requirements into a conceptual database schema. The logical
design represents the data model of a database, i.e., data types, the format of storing data (tables,
documents, nodes etc.). Physical design plays an vital role to match the data with the storage
environment in an efficient way. In addition, it includes some peculiarities, i.e., specific data types,
storage forms, partitioning, and clustering capabilities etc.(Zdepski et al., 2018). The key differences
between relational database and object-oriented databases are summarized in Table 2 (databasetown,

n.d.).
Table 2

Key Differences Between Relational Database and Object-Oriented Databases

Criteria Relational Database Object Oriented Database
Data is stored in tables Data is stored in objects.
Definition which consist of rows and Objects contain data.

Amount of data

Type of data

How data is stored

Data Manipulation
Language

Learning

Structure

Constraints

Cost

columns.

It can handle large amounts
of data.

Relational database has
single type of data.

Data is stored in the form of
tables (having rows and
columns).

DML is as powerful as
relational algebra. Such as
SQL, QUEL and QBE.

Learning relational database
is a bit complex.

It does not provide a
persistent storage structure
because all relations are
implemented as separate
files.

Relational model has key
constraints, domain
constraints, referential
integrity and entity integrity
constraints.

The maintenance cost of
relational database may be
lower than the cost of
expertise required
development and
integration of object
oriented database.

It can handle larger and
complex data.

It can handle different types of
data.

Data is stored in the form of
objects.

DML is incorporated into
object-oriented programming
languages, such as C++, C#.

Object oriented databases are
easier to learn as compared to
relational database.

It provides persistent storage for
objects (having complex
structure) as it uses indexing
technique to find the pages that
store the object.

To check the integrity
constraints is a basic problem in
object-oriented database.

In some cases hardware and
software cost of object oriented
databases is lower cost than
relational databases.

350



Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363

Data persistence refers to the ability of data to remain accessible and retrievable even after the
completion of a software application or in the event of runtime crashes. Essentially, it involves
securely storing and reliably loading data when required. In recent times, in-memory data persistence
has emerged as the cutting-edge approach. The concept of in-memory data persistence revolves around
storing data in either memory or external databases/storages to ensure its persistence and availability
(Chen et al., 2019).

Persistent object store is a data storage system based on objects. Such a system saves and loads the
data that is persistent in the form of objects (Brown and Morrison, 1992). POSs are useful to prevent
the problem of impedance mismatch. It is a problem that occurs when an object oriented application
tries to retrieve the relevant data in other types of databases, such as relational database management
systems (RDBMSSs). There are three types of Users do not need to connect a database and to create a
query in order to get persistent data by using POSs (Atkinson et al., 1983; Chen et al., 2014).

There are some studies that have discussed about implementing persistent data model. Kozynchenko
(2006) developed a persistent object-oriented model by using C++ as shown in Figure 1. He suggested
an approach to build object-oriented models that provide persistency that is necessary for database
systems. The model is based on the parent and child classes, objects linked by pointers, inheritance
hierarchy and files structure provided by C++ programming language. Also, Chen et al. (2019)
established a model for in-memory data persistence by using javascript and Intel’s Persistent Memory
Development Kit (PMDK), which is a C++ development kit to make the implementations of persistent
memory, as shown in Figure 2 and Figure 3. Cortes et al. (2019) presented CAPre (Code-Analysis
based Prefetching for Persistent Object Stores) that is a novel prefetching system for Persistent Object
Stores based on static code analysis of object-oriented applications as seen in Figure 4.

Figure 1

Generalized Scheme of the C++ Persistent Object-Oriented Model

: Booch diagram of types and amTTTTIT - File structure

. relationships . Base
Size of Model's
_________ container
Model
-1 string (™ A™)
|
: ai
I
|
|
¢ Objects in |
. memory : i
|
I
| .
| string (" B™)
|
bl
P \\ —— s s S I w—— string (" B™)
: Model’s array of v 4 ; :
. base-class pointers \\ r j P bi
N ;
! E
Ay . w
» A » ¥ i string (" ")
&a; &b; | - &z | 7
\ AN J H—/
Y Y string (" Z7)
Pointers to objects of Pointers to objects of Pointers to objects of 7
class A class B class Z !

351



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363

Figure 2
An Overview of Jdap
[ Applications ]
!
[creale_ponl] [ open_pool ] [ check ] [ [[set_root]] ] &gﬂ_mﬂ]:
JavaScript Persistent APIs
!
Persistent Array : ;
Buffer (PAB) J [ Persistent Object ] W
JavaScript Persistent Object Pool =/
EREERERERES - || SHESETREEERTE
[ Memory-based File |
: I mmap
[ Memory ]
Figure 3

Javascript Persistent Object Pool

Volatile Memory

Type/Class object cache

Root atype table R el SRS L o %
Vg ‘ 4 -

[metadata || <}t rootobject |
4 L -_ ; |
1 <40 O i

~~~~~~~~~~~
......

Figure 4
Overview of the Proposed Prefetching System

Application  Application
Classes

b Modified Classes
—

|

wsuodwon
sisA|euy apo onels

Persistent Object Store

jauodwo)
uonoelu] @po) adinosg

352



Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363

Composition refers to the relationship between objects where one object (referred to as the whole or
parent) possesses another object (known as the part or child). In simpler terms, the parent object
retains ownership of the child object, and the child object remains in existence as long as the parent
object exists.

Figure 5 Figure 6
Composition Diagram in UML The Syntax of Composition
class A
Whole [

// body of a class

i
class B
1 1 1
{
0.* 1.* 0.1 A objA;
Part 1 Part 2 Part 3 public:

B(arg-list) : objA(arg-list1);

k;

Figure 5 depicts a compositon diagram as an example (Lorenzo, 2020). This diagram explains that
whole object has different parts. The syntax of compositon is given in Figure 6 (Geeksforgeeks, 2022).

Figure 7

Implementation of Delegation

class First
{
public:
void print() { cout << "The Delegate"; }
}:
class Second
{
First ob;
public:
void print() { ob.print(); }
I
int main()
{
Second obl;
obl.print();
return 0;

}

Delegation is a feature of C++ programming language that can be used instead of inheritance. It is also
useful technique for object-oriented programmers. Delegation has the effect of interitance. In C++, it
can change the behaviour of an object dynamically by changing an object’s delegatee. A sample code
of delegation is shown in Figure 7 (Johnson and Zweig, 1991; Geeksforgee, 2022).

C++ Standard Template Library (STL) includes different types of containers, for example, list, vector,
map, etc. A vector is an array that has a dynamic chracteristic. It contains values (elements) of the
same type. When a person adds an element to a vector, it can adjust its own size automatically. Every
element follows other element in order (Geeksforgee, 2022; Pataki et al., 2011).

A data structure or an instance of a class can be saved in the memory of a computer system if they are
converted to an appropriate format. Serialization makes such a conversion possible. Re-creation of the

353



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363

same object stored in the memory is called deserialization. Binary serialization stores an object in
sequences of bits (Tauro et al., 2012). Object serialization causes storage amount of data to reduce
(Carrera et al., 2018).

3. Material and Method

This chapter explains what the model is and gives information about implementation of object-
oriented model. In this study, a persistent object-oriented model has been proposed in Figure 8. The
main purpose of this model is to introduce an approach in order to build the base of an object-oriented
tool that will help users to manage business data for especially small companies in every industry
without needing any database management system by contributing to the problem of impedance
mismatch.

Figure 8
The Proposed Persistent OOM

manager record

. Delegat
nsert E obj  ield
setDesc( ) avec : vector <field>

eat setValue() setDesc( )
createTable( ) setValue( )
descTable() serialize( )
dispRecord( )
addRecord( )

addRecord( )
friend load( )
friend save( )

Delegate

Load/save records Delegate

field
table Delegate

fname : string
ftype : string

createTable( ) fualue : string
friend save( )

ave records———|  svec : vector <record>

dat file(s)

setDesc( )
setValue( )
serialize( )

display

—Load records—————————»|

descTable( )
dispRecord( )
friend load( )

The model has class manager that has an interface role between a user and a system. The code sample
is given in Figure 9. The manager class delegates tasks to other relevant classes. Delegation
contributes to increase the level of modularity in the OOM and to decrease the effects of code
scattering and code tangling issues in OOP. The record class has “has-a” relationship (composition)
with the class field in order to define the structure of a record as an object. The class record delegates
tasks (setDesc() and setValue()) to the class field. Vectors have been used as a container to keep the
field objects together to build a record or to keep the record objects together to create a table.

Figure 9

Code Sample of Class Manager

class manager

{

public:

record setDesc{record o)
o.sethesc () ;
return o;

record setValue (record o)
o.setValue () ;

return o;

//some codes

354



Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363

In this study, C++ programming language has been used. C++ is one of languages that consumes less
memory, expends least energy and is faster than other 27 programming languages in the research. In
addition, C++ is one of pioneers that represents object-oriented paradigm (Pereira et al., 2017). C++

needs an external library to make a serialization/deserialization process. Boost library has been used in
this study as depicted in Figure 10.

Figure 10

Boost Library

class record

{

public:
vector <field> avec;
// some codes

private:
friend class boost::serialization: :access;

template <class Archive>
vold serialize(Archive& ar, const unsigned version)
{

ar& avec;

}

}:
The serialize function is designated as private within the respective classes (record and field). For
storing an object in an archive (save function), the << or & operator is utilized, while the >> or &
operator is employed to retrieve an object from an archive (load function), as illustrated in Figure 11
and Figure 12 When invoking one of these operators, the serialization function is called by the system.
Instances of class records are stored in the relevant .dat file. Every .dat file has the role of a table that
includes record objects as shown in Figure 8. Save () and Load () are friend functions. It means that
they are not member functions of other classes. In other words, they are common functions used by

other objects so that such a behaviour in the model prevents issues of scattering and tangling in object
oriented coding.

Figure 11

Save Function

void save (string name, vector<record> svec, record o)

boost::archive::text oarchive archive (outfile);
archive << svec;

355



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363

Figure 12
Load Function

vector<record> load(string name)

boost::archive::text iarchive archive(infile);
archive >> svec;

}

return svec;

}

4. Findings

This chapter includes the findings after implementing the model and provides the validation of the
model. The proposed model has been realized some of SQL commands. Table 3 shows comparison of
class functions in the OOM and MySQL equivalents.

Table 3

Comparison of Class Functions And MySQL Equivalents

Class Name Functions In Classes MySQL equivalent
record setDesc () + createTable () create table table_name
table (

columnl datatype,
column2 datatype,

column3 datatype

);
display descTable() describe table_name
record setValue () + addRecord () insert into table_name (columni,
insert column2, column3) values (valuel,

value2, value3);

display dispRecord () select * from table_name

As stated in Figure 13 and Figure 14, setDesc() member function of the class record defines every
necessary field belonged to a record, after that, createTable function of the class table adds this record
object to the relevant dat file that behaves like a table. As a result, co-operation of these 2 member
functions realizes the same functionality as “Create Table” command of MySQL.

356



Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363
Figure 13

setdesc() Function of Class Record

lass record

i)

/ some codes

1]

void setDesc()

{

int n;
cout << "enter the number of field :";
cin >> n;
for (int 5 = 0; 3 < n; s++)
{
obj.setDesc () ;
avec.push back(obij) ;

Figure 14

createtable() Function of Class Table

class table

{

//scme codes
void createTable(record o)
{

string name;

cout << endl << "Enter tabl

cin >> name;
save (name, svec, o);

}
¥

In Figure 15, the object mng, which plays the role of interface, calls setDesc() and createTable()
functions to describe and to create a table.

Figure 15

Describing and Creating a Table in the Main Function

295 =int main()

209 |{

297

298 record o;

299 vector<record > svec;

300 manager mng;

301 table t;

302 display d;

303 insert ins;

304

305 © /* Describing and Creating a table
306 rRrkkkERE* Tt is like "Create Table"™ command in SQU¥#sHkkokkekobsdrkiokk ki
367 */

308 0 = mng.setDesc(o);

309 mng.createTable(o, t);

310

311 return @;

312

313 }

314

In the runtime, users can decide a function call by using the class manager. In addition, users can
determine the number of fields that will be defined. Vectors can adjust their size automatically. Save

357



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363

function also invokes the serialize function (dynamic binding) in the relevant class. All of such
features make the structure of the model dynamic as shown in Figure 16.

Figure 16

Implementation of Describing and Creating a Table

 the number of Field &3

« name of fie

pie L na
« the

wona of fie
r name of typess

nter tahle name:student

Reliability is an important measurement to show the validity and quality of a software system. In
other words, it is probability of that the program will perform necessary functions in a correct way
(Johny, 2013).

Chidamber and Kemerer’s metric set (CK Metrics) is well-known for measuring OOP. It has been
used for the model proposed because it is suitable for object-oriented coding whose process is finished
(Katic et al.,, 2013). CK Metrics set evaluates object-oriented design instead of software
implementation (Ponnala and Reddy, 2019). It includes six metrics as shown in Table 4 (Basili et al.,

1995; Bakar et al., 2014; Chidamber and Kemerer, 1994).

Table 4

Definitions of CK Metrics

Metrics Definition
Weighted Methods The number of methods defined in each class. If a class has more member functions, it
per Class (WMC) will be more complex. This causes more errors to be happened

Depth of Inheritance
Tree of a class (DIT)

Number of Children
of a Class (NOC)

Coupling Between
Object classes (CBO)

Response For a Class
(RFC)

Lack of Cohesion on
Methods (LCOM)

The number of ancestors of a class. Well-designed OO systems have not a large
inheritance tree.

The number of direct descendants for each class. If a class has more children, it will be
difficult to manage it

The number of classes which their members are used by a given class. Weakly coupling
means less probability of occurring faults.

The number of functions directly called by member functions of a class. Larger RFC
means higher complex, more fault-prone classes.

(The number of function pairs not using common instance variables) — (The number of
function pairs using common instance variables). A class with low cohesion (high
LCOM) among its methods suggests an inappropriate design.

Threshold values for CK Metrics, which are used to predict software reliability, are established by
researchers and presented in Table 5.

358



Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363
Table 5
Threshold Values of CK Metrics

Related Works WMC DIT NOC CBO RFC LCOM
Calp & Aricy, 2011 Low Low Low Low Low Low
Goel & Bhatia, 2012 2 2 2 1 5 1
Zhou & Leung, 2006 0-15 06 0-6 0-8 0-35 0-1
Mago & Kaur, 2012 0-11 0-4 13 0-3 0-12 0

Edith & Chandra, 2010  0-15 0-6 0-6 0-8 0-35 0-1

Reliability is inversely proportional to CK metrics as follows:

Reliability a 1/WMC
Reliability o 1/RFC
Reliability a 1/DIT
Reliability a 1/LCOM
Reliability a 1/CBO

Reliability of software based on CK Metrics is calculated according to rules as follows (Johny, 2013;
Misra and Roy, 2015; Yilmaz and Tarhan, 2019):

e Weighted values for CK Metrics:
= If lower threshold limit < value of metric < mean of threshold range, weighted value is
1.
= If mean of threshold range < value of metric < upper threshold limit, weighted value is
2.
= If value of metric is outside of threshold range, weighted value is 7.
e Interms of NOC metric:
= (log(upper threshold limit of NOC))? is used for R-max (Maximum reliability value)
= (log(lower threshold limit of NOC))? is used for R-min (Minimum reliability value)
= If NOC value is outside of threshold range, it will be omitted.

¢ Reliability value (R) is calculated as follows:

R = k*(1/(wt(WMC)+wt(DIT)+wt(RFC)+wt(LOCM)+wt(CBO)) + (log(wt(NOC)))? (D)
where wt(WMC) is weighted value of WMC etc., k is 1.

R-max = k*(1/(1+1+1+1+1)) + (log(upper threshold of NOC))? 2)
where weighted value of every metric is maximum.

R-min = k*(1/(2+2+2+2+2)) + (log(lower threshold of NOC))? 3)

where weighted value of every metric is minimum.
R should be between R-max and R-min. In other words, R-min < R < R-max.

None of OO metrics can not individually explain the quality of object-oriented design. To evaluate the
OOM, threshold limits (Mago and Kaur, 2012) in Table 4 have been preferred because the model on
this work has provided the integrated evaluation of CK Metrics based on fuzzy logic.

The average values of metrics (Calp and Arici, 2011) belonged to classes in the proposed model are
shown in Table 6.

359



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363

Table 6
Values of CK Metrics in the Model Proposed

Class WMC DIT NOC CBO RFC LCOM

Name

manager 6 0 0 4 6 0
insert 3 0 0 1 0 0
display 3 0 0 1 0 0
table 2 0 0 1 0 0
record 3 0 0 1 2 0
field 3 0 0 0 0 0
Average

of 3,33 0 0 1,33 1,33 0
metrics

In Table 7, it is stated that R-Max is 0,428, R-Min is 0,1. In addition, Reliability value of the model is
0,2 showing that the model is reliable because it is between R-Min and R-Max.

Table 7
Reliability VValues of the Model Proposed

WMC DIT NOC CBO RFC LCOM

Average of metrics 3,33 0 0 1,33 1,33 0

R-Max 1*#(1/(1+1+1+1+1)) + (log(3))? = 0,428
R-Min 1*#(1/(2+2+2+2+2)) + (log(1))* = 0,1
R 1*(1/(1+1+1+1+1)) = 0,2

NOC is omitted

Another point is that the metrics of the model are fit to metric values shown in Table 4. This also
proves that the proposed model is reliable.

5. Conclusion

In this study, an OOM, based on persistence and delegation concepts, has been implemented. It has
shown that users can manage business data with the persistent objects without a database management
system to prevent the impedance mismatch problem. To manage business data, this implementation
has also provided the realization of some SQL commands, i.e., select, insert, create table, describe
table that is available in MySQL database management system. In addition, data represented by
persistent objects has been saved by using serialization methodology. The implementation points out
that the OOM has a dynamic structure. Interface has also been established by using the delegation
concept in order to increase the modularity level. The reliability of the model has been proved based
on CK Metrics. On the other hand, this model will need new features that make it technically more
powerful in the future. Data conversion, data integrity checks, updating data, searching data can be
given as examples of new features for researchers in the relevant field.

360



Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363

Compliance with Ethical Standards

Conflict of Interest: The author declare that there is no conflict of interest.

Ethics Committee Permission: Ethics comittee approval is not required for this study.
Authors Contribution Rate Statement: The author declares that he has contributed fully to the
article.

Financial Support: No

References

Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, P.W. & Morrison, R. (1983). An approach to
persistent programming. The Computer Journal, 26(4), 360-365, doi:
http://dx.doi.org/10.1093/comjnl/26.4.360.

Bakar, A.D., Sultan, A., Zulzalil H. & Din, J. (2014). Predicting Maintainability of Object oriented
Software Using Metric Threshold. Information Technology Journal, 13(8), 1540-1547, 2014.

Basili, V.R., Briand, L. & Melo, W.L. (1995). A Validation of Object-Oriented Design Metrics as
Quality Indicators. Technical Report, Dep. of Computer Science, Univ. of Maryland, College Park,
MD, USA. https://www.cs.umd.edu/~basili/publications/technical/T102.pdf

Bergesio, L., Bernardos, A.M. & Casar, J.R. (2017). An Object-Oriented Model for Object
Orchestration in Smart Environments. Procedia Computer Science, 109C, 440-447.

Brown, A.L. & Morrison R. (1992). A generic persistent object store. Software Eng. Journal, 7(2),
161-168, doi: http://dx.doi.org/10.1049/sej.1992.0017.

Calp, M.H. & Arici, N. (2011). Nesne Yonelimli Tasarim Metrikleri ve Kalite Ozellikleriyle iliskisi.
Politeknik Dergisi, 14(1), 9-14.

Candel, C.J.F., Ruiz, D.S. & Garcia-Molina, J.J. (2022). A unified metamodel for NoSQL and
relational databases. Information Systems, 104, 101898, 1-26, doi:
https://doi.org/10.1016/j.i5.2021.101898

Carrera, D., Rosales, J.& Gustavo, A. (2018). Optimizing Binary Serialization with an Independent
Data Definition Format. International Journal of Computer Applications, 180, 15-18.

Chen, T.H., Shang, W., Jiang, Z.M., Hassan, A.E., Nasser, M. & Flora, P. (2014). Detecting
performance anti-patterns for applications developed using object-relational mapping. Paper
presented at the 36th International Conference on Software Engineering, Hyderabad, 2014, pp.
1001-1012. http://dx.doi.org/10.1145/2568225.2568259.

Chen, Y., You, L., Xu, H., Zhang, Q., Li, T., Li, C. & Huang, L. (2019). JDap: Supporting in-memory
data persistence in javascript using Intel’s PMDK. Journal of Systems Architecture, 101(2019),
101662, 1-12. doi: https://doi.org/10.1016/j.sysarc.2019.101662

Chidamber, S.R. & Kemerer, C.F. (1994). A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6), 476-493.

Cortes, T., Queralt, A. & Touma, R. (2019). CAPre: Code-Analysis based Prefetching for Persistent
Object Stores. Future Generation Computer Systems, 111(2020), 491-506, doi:
https://doi.org/10.1016/j.future.2019.10.023

Coruhlu, Y.E. & Yildiz, O. (2017). Geographical database for object-oriented land division modelling
in Turkey. Land Use Policy, 68, 212-221.

Databasetown (n.d.). Relational Database vs Object-Oriented Database (Key Differences). Retrieved
from https://databasetown.com/relational-database-vs-object-oriented-database-key-differences/

Edith, L.P. & Chandra, E (2010). Class Break Point Determination Using CK Metrics Thresholds.
Global Journal of Computer Science and Technology, 10(14), 83-87.

361



C. U. Baytar Peer-Reviewed Articles Bilgi Yonetimi 6: 2 (2023), 348 - 363

Geeksforgee (2022, Febraury 11). Composition. Retrieved from
https://www.geeksforgeeks.org/object-composition-delegation-in-c-with-example

Geeksforgeeks (2022, January 18). Object Delegation in C++. Retrieved from
https://www.geeksforgeeks.org/object-delegation-in-cpp

Geeksforgeeks (2022, May 13). Vector in C++. Retrieved from https://www.geeksforgeeks.org/vector-
in-cpp-stl

Goel, B.M. & Bhatia, P.K. (2012). Analysis of Reusability of Object-Oriented System using CK
Metrics. ACM SIGSOFT Software Engineering Notes, 38(4), 1-5.

Johnson, R. & Zweig, J.M. (1991). Delegation in C++. Journal of Object-Oriented Programming, 4,
31-34.

Johny, A.P. (2013). Predicting Reliability of Software Using Thresholds of CK Metrics. Int. J.
Advanced Networking and Applications, 4(6), 1778-1785.

Katic, M., Boticki, I.. & Fertalj, K. (2013). Impact of Aspect Oriented Programming on the Quality of
Novices’ Programs: A Comparative Study. Journal of Information and Organizational Sciences,
37(1), 45-61.

Kozynchenko, A. (2006). Constructing persistent object-oriented models with standard C++. Journal
of Object Technology, 5(1), 69-81.

Lajam, O. & Mohammed, S. (2022). Revisiting Polyglot Persistence: From Principles to Practice.
International Journal of Advanced Computer Science and Applications, 13(5), 872-882.

Liu, D., Chena, M., Lin, H., Zhang, H. & Yue, S. (2015). An object-oriented data model built for blind
navigation in outdoor space. Applied Geography, 60, 84-94.

Lorenzo, T. (2020). Object-oriented event-graph modeling formalism to simulate manufacturing
systems in the Industry 4.0 era. Simulation Modelling Practice and Theory, 99, 1-33.

Ma, Z.M., Zhang F. & Li, W. (2015). Storing OWL ontologies in object-oriented databases.
Knowledge-Based Systems, 76, 240-255.

Mago, J. & Kaur, P. (2012). Analysis of quality of the design of the object oriented software using
fuzzy logic. International Journal of Computer Applications, 21-25.

Misra, S. & Roy, B. (2015). Assessment of Object Oriented Metrics for Software Reliability.
International Journal of Engineering Research & Technology, 4(1), 432-435.

Moniruzzaman, A. & Hossain, S. A. (2013). Nosgl database: New era of databases for big data
analytics-classification, characteristics and comparison. International Journal of Database Theory
and Application, 6(4), 1-14.

Pataki, N., Szligyi, Z. & Dévai, G. (2011). Measuring the Overhead of C++ Standard Template
Library Safe Variants. Electronic Notes in Theoretical Computer Science — ENTCS, 264(5), 71-83.

Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.P. & Saraiva, J. (2017). Energy
Efficiency across Programming Languages: How Do Energy, Time, and Memory Relate? ACM
SIGPLAN International Conference on Software Language Engineering, Vancouver, 2017, pp.
256-267.

Ponnala, R. & Reddy, C.R.K. (2019). Object Oriented Dynamic Metrics in Software Development: A
Literature Review. International Journal of Applied Engineering Research, 14(22), 4161-4172.

Schubert, P., Blankenberg, C. & Gebel-Sauer, B. (2022). Using a graph database for the ontology-
based information integration of business objects from heterogenous Business Information
Systems. Procedia Computer Science, 196, 314-323.

Tauro, C. N., Mishra, G.S. & Bhagwat, A. (2012). A Study of Techniques of Implementing Binary
Serialization in C++, Java and .NET. International Journal of Computer Applications, 45, 25-29.

362


https://www.geeksforgeeks.org/object-composition-delegation-in-c-with-example
https://www.geeksforgeeks.org/object-delegation-in-cpp
https://www.geeksforgeeks.org/vector-in-cpp-stl
https://www.geeksforgeeks.org/vector-in-cpp-stl

Managing Business Data... Peer-Reviewed Articles Bilgi Yonetimi 6: 2(2023), 348 - 363

Truica, C.0O., Apostol, E.S., Darmont, J. & Pedersen, T.B. (2021). The Forgotten Document-Oriented
Database Management Systems: An Overview and Benchmark of Native XML DODBMSes in
Comparison with JSON DODBMSes. Big Data Research, 25, 1-14.

Yilmaz, N. & Tarhan, A. (2019). A two-dimensional method for evaluating maintainability and
reliability of open source software. Journal of the Faculty of Engineering and Architecture of Gazi
University, 3(4), 1807-1829.

Zdepski, C., Bini, T. & Matos, S. (2018). An Approach for Modeling Polyglot Persistence. 20th
International Conference on Enterprise Information Systems, Maderia, 2018, pp. 120-126.

Zhou, Y. & Leung, H. (2006). Empirical analysis of object-oriented design metrics for predicting high
and low severity faults. IEEE Trans. Softw. Eng., 32(10), 771-789.

Zuo, W., Fu, Y., Wetter, M., VanGilder, J.W. & Yang, P. (2019). Equation-based object-oriented
modeling and simulation of data center cooling systems. Energy&Buildings, 198, 503-519.

363



