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Cilt 27, Sayı 3, 401-410, 2023 

DOI: 10.19113/sdufenbed.1250855 

Comparison of Classical and Robust Factor Analyses Methods 

Barış ERGÜL*1 , Zeki YILDIZ2 

1,2University of Eskişehir Osmangazi, Faculty of Science, Department of Statistics, 26040, Eskişehir, Türkiye 

(Alınış / Received: 13.02.2023, Kabul / Accepted: 14.09.2023, Online Yayınlanma / Published Online: 25.12.2023)

Keywords 
MLE, GLS, MCD, M, Classical 
Factor Analysis, Robust 
Factor Analysis 

Abstract: Factor analysis is a multivariate statistical analysis technique that has 
become very popular in recent years. In the factor analysis model, the error 
covariance matrix is assumed to be the multivariate normal distribution, and 
outliers are likely to be accounted for. Various estimation methods were compared 
with Monte Carlo simulation for the factor analysis model. The performances of the 
estimation methods were evaluated based on the ratio of the total variance 
explained and the criterion fit values. Considering the MLE, PCA, WLS, and GLS 
methods for classical factor analysis and the MCD, M, and S methods for robust 
factor analysis, the ratio of total variance explained, and fit values decreased as the 
sample size increased. When the number of variables increases, the ratio of total 
variance explained, and fit values increase at different sample sizes. It can be said 
that the WLS and GLS methods are better than others for classical factor analysis 
and the MCD and M methods are better than others for robust factor analysis.  

Klasik ve Sağlam Faktör Analizleri Yöntemlerinin Karşılaştırılması 

Anahtar Kelimeler 
MLE, GLS, MCD, M, Klasik 
Faktör Analizi, Sağlam Faktör 
Analizi 

Öz:  Faktör analizi, son yıllarda popüler hale gelen çok değişkenli istatistiksel 
analiz tekniklerinden biridir. Bu çalışmada, hata kovaryans matrisinin çok 
değişkenli normal dağılım ve aykırı değerler olması durumunda faktör analizi 
modeli kullanılmıştır. Faktör analizi modeli için farklı tahmin yöntemleri Monte 
Carlo simülasyonu ile karşılaştırılmıştır. Tahmin yöntemlerinin performansı, 
açıklanan toplam varyans oranı ve uyum değerleri kriterine göre 
değerlendirilmiştir. Klasik faktör analizi için MLE, PCA, WLS ve GLS yöntemleri ve 
sağlam faktör analizi için MCD, M ve S yöntemleri dikkate alındığında, toplam 
varyansın açıklama oranı ve fit değerleri, farklı örneklem büyüklüklerinde artarak, 
her bir örneklem büyüklüğünde azalmıştır. Değişken sayısı arttıkça açıklanan 
toplam varyans oranı ve fit değerleri farklı örneklem büyüklüklerinde artmaktadır. 
Klasik faktör analizi için WLS ve GLS yöntemlerinin, sağlam faktör analizi için MCD 
ve M yöntemlerinin daha iyi yöntemler olduğu söylenebilir. 

1. Introduction

Today, many variables shed light on problems, 
events, facts or perceptions, attitudes, and behaviors. 
It is no longer sufficient to examine a single variable 
to solve the problems arising from these events, 
phenomena, perceptions, attitudes, and behaviors. 
However, as the number of variables increases, the 
study of events, phenomena, perceptions, attitudes, 
and behaviors becomes even more complex. 

Factor analysis is a multivariate statistical analysis 
technique that has become very popular in recent 
years. Factor analysis aims to determine the original 
(independent) variables in the data set with linear 
combinations called factors. The first step is to create 
the covariance matrix (or correlation matrix) when 

the number of original variables is 𝑝. The factor 
analysis model contains many parameters, including 
the variances of the error components. The error 
components are the parts of the observed variables 
that are not explained by the factors. The variances of 
the error components are important because they 
determine the amount of variance in the observed 
variables that are not explained by the factors [1]. 

𝑝  is the independent variable, assuming that 
𝑥1, 𝑥2, … , 𝑥𝑝 , and 𝑘  associate the latent factors 

𝑓1, 𝑓2, … , 𝑓𝑘 with the following statistical model: 

𝑥𝑗 − 𝜇𝑗 = 𝜆𝑗1𝑓1 + 𝜆𝑗2𝑓2 + ⋯ + 𝜆𝑗𝑘𝑓𝑘 + 휀𝑗  (1) 

𝜆𝑗1, 𝜆𝑗2, … 𝜆𝑗𝑘  refers to the factor loadings, 휀𝑗 refers to 

the error terms. 
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Factor Analysis Model with 𝑘 factor is defined as 
follows with matrix notation when defined by 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑝)
′
, 𝑓 = (𝑓1, 𝑓2, … , 𝑓𝑘) and 

휀 = (휀1, 휀2, … , 휀𝑝)′. 

𝑥 − 𝜇 = Λ𝑓 + 휀  (2) 

Λ refers to the matrix of factor loadings, 𝑓 refers to 
the factor score vector and 휀 refers to the error 
vector. 

The assumptions of the factor analysis model are as 
follows: [2] 

1. The factors and the vector of the error terms are
independent of each other and their mean is a zero
vector. (𝐸(𝑓) = 𝐸(휀) = 0, 𝐶𝑜𝑣(𝑥, 𝑓) = Λ)

2. The covariance matrix of the factors is equal to the
unit vector. (𝐶𝑜𝑣(𝑓) = 𝐼𝑘)

3. The joint distribution of the factors is a
multivariate normal distribution.

These assumptions are strong, and they may not 
always be met in real data. However, it has been 
shown that the classical estimates have good 
asymptotic properties under some weak 
assumptions. This means that the estimates will be 
approximately correct as the sample size increases. 

Some of the weak assumptions that are sufficient for 
the classical estimates to have good asymptotic 
properties include: 

i. The factors are not perfectly correlated.
ii. The error terms are not perfectly correlated.
iii. The error terms have a finite variance.

These assumptions are more likely to be met in real 
data than the strong assumptions listed above. 
Therefore, the factor analysis model can be a useful 
tool for data analysis even if the strong assumptions 
are not met. 

It is important to note that the factor analysis model 
is a statistical model, and as such, it is only an 
approximation of reality. The estimates from the 
factor analysis model will never be perfect, but they 
can be a useful tool for understanding the data [3-4]. 

The main purpose of factor analysis is to obtain the 
matrix 𝚲 and the covariance of the error matrix (𝚿) 
obtained by orthogonal transformation. The 
maximum likelihood method and the basic factor 
methods are obtained by separating the matrix 𝚺 
where Σ = 𝐶𝑜𝑣(𝑥). 

Σ = ΛΛ′ + 𝑑𝑖𝑎𝑔(Ψ)   (3) 

The factor analysis model is shown in equations (1) 
and (2). The variance of the variables to which the 
common factor contributes is called the common 
variance. The common variance can be replaced in 
the equation by ℎ𝑖

2 in the equation Σ = ΛΛ′ + Ψ and
Σ = 𝐻2 + Ψ can be written. The common variance is 
the sum of the loadings of the variables on the 
common factor. When 𝑘 > 1, there is always some 
natural uncertainty associated with the factor model. 

Let T which is any 𝑚𝑥𝑚  dimensional orthogonal 
matrix and consider 𝑇𝑇′ = 𝑇′𝑇 = 𝐼. The equality in 
(2) can be written as follows:

𝑥 − 𝜇 = Λ𝑓 + 휀 = Λ𝑇𝑇′ + 휀 = Λ∗𝑓∗ + 휀
Λ∗ = Λ𝑇 ve  𝑓∗ = 𝑇′𝑓 and, 
𝐸(𝑓∗) = 𝑇′𝐸(𝑓) = 0 and, 

𝐶𝑜𝑣(𝑓∗) = 𝑇′𝐶𝑜𝑣(𝑓)𝑇 = 𝑇′𝑇 = 𝐼 

 (4)  

Based on the observations on 𝑥, it is impossible to 
distinguish Λ factor loadings and Λ∗ factor loadings. 
That is, 𝑓 ve 𝑓∗ = 𝑇𝑓 factors have the same statistical 
properties. In general, although Λ∗  factor loadings 
and Λ factor loadings are different, they were both 
obtained from the same covariance matrix. 

Σ = ΛΛ′ + Ψ = ΛTT′Λ′ + Ψ = (Λ∗)(Λ∗)′ + Ψ (5) 

Since orthogonal matrices correspond to coordinate 
system transformations, the uncertainty structure is 
removed by “factor rotation”. Λ factor loadings are 
determined by an orthogonal matrix 𝑇. 

Λ∗ = Λ𝑇 and  Λ    (6) 

The common variance is determined by the diagonal 
elements of the matrix ΛΛ′ = (Λ∗)(Λ∗)′ is not affected 
by the choice of the orthogonal matrix 𝑇. 

The factor analysis progresses by identifying 
conditions that allow the estimation of λ and ψ 
matrices. The matrix of factor loadings is then rotated 
(multiplied by an orthogonal matrix), with the 
rotation determined by some of the “ease of 
interpretation” criteria. Once the factor loadings and 
error terms have been determined, the factors are 
determined and the estimated values of the factors 
themselves (called factor scores) are produced [5]. 

The factor analysis model for this study assumed that 
the covariance matrix error terms had a multivariate 
normal distribution, and outliers are likely to be 
considered. Various estimation methods were 
compared with the Monte Carlo simulation for the 
factor analysis model. The performance of the 
estimation methods was evaluated based on the ratio 
of the total variance explained and fit values. In the 
second phase of the study, estimation methods were 
presented. Later, the estimation methods were 
compared with the simulation study for different 
sample sizes. 
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The remainder of this paper is arranged as follows. 
The Factor Analysis models are described in Section 
2. Section 3 describes simulation results for Classical
and Robust estimation of the Factor Analysis models.
Section 4 considers an application of the Classical and
Robust Factor Analysis models to Women Track
Records data. Different estimation techniques are
compared in terms of computational efficiency.
Conclusions and a few remarks are given in Section 5.

2. Material and Methods

The sample covariance matrix (𝑆) is an estimator of 
the unknown population covariance matrix Σ. If the 
out-of-diagonal elements of the 𝑆 matrix obtain small 
values, the variables (or if the sample correlation 
matrix is essentially close to zero or zero value) are 
unrelated and it is not useful to analyze a factor. 
However, the main purpose of the factor analysis is to 
determine common factors. 

Three of the most commonly used methods for 
parameter estimation in factor analysis are the 
principal component (and the corresponding basic 
factor), the maximum likelihood method and the 
robust estimation method. 

2.1. Principal Component Method 

The principal component factor analysis of the 𝑆 
sample covariance matrix is indicated by 

�̂�1 ≥ �̂�2 … ≥ �̂�𝑝, the eigenvalues/eigenvectors pairs 

(�̂�1, �̂�1), (�̂�2, �̂�2), … , (�̂�𝑝, �̂�𝑝). To show the number of 

common factors given with 𝑘 < 𝑝, the prediction 

matrix of the estimated factor loadings 𝑙𝑖𝑗  is given as

follows [5]: 

Λ̃ = [√�̂�1�̂�1 ⋮ √�̂�2�̂�2 ⋮ ⋯√�̂�𝑘�̂�𝑘] (7) 

The estimated error term matrix is provided by the 
diagonal elements of the 𝑆 − Λ̃Λ̃′ matrix: 

Ψ̃ = [

Ψ̃1 0 … 0

0 Ψ̃2 … 0

0 0 … Ψ̃𝑝

]   (8) 

Here, it is expressed by Ψ̃𝑖 = 𝑠𝑖𝑖 − ∑ 𝑙𝑖𝑗
2𝑘

𝑗=1 . The 

common variance is estimated as follows: 

ℎ̃𝑖
2 = 𝑙𝑖1

2 + 𝑙𝑖2
2 + ⋯ + 𝑙𝑖𝑘

2   (9) 

The principal component factor analysis for the 
correlation matrix found by the sample is obtained 
starting with 𝑅 instead of 𝑆. 

𝑆 − (Λ̃Λ̃′ + Ψ̃)   (10) 

The diagonal elements of the 𝑆 matrix will be equal to 

the diagonal elements of the Λ̃Λ̃′ + Ψ̃  matrix. To 
prevent this situation, this problem is solved by 
taking the factor as the number of principal 
components of the 𝑆  matrix. This raises several 
factors. This allows the selection of eigenvalues larger 
than the value of 1, as in the principal component 
analysis [5]. 

2.2. Maximum Likelihood Method, Weighted Least 
Squares, and Generalized Least Squares Method 

If the distribution of factors and error terms are 
assumed to be normal, the maximum likelihood 
estimation of factor loadings and error variance can 
be written. When the joint probability functions of 
the 𝑓𝑗 and 휀𝑗 are normally distributed, 𝑥𝑗 − 𝜇 = Λ𝑓𝑗 +

휀𝑗 also has the normal distribution. In this case, the 

maximum likelihood function can be written. The 
maximum likelihood function varies between Λ and 

Ψ, Σ = ΛΛ′ + Ψ. Estimation of Λ̂ and Ψ is resolved by 
providing the following conditions [5-6]: 

SΨ̂Λ̂ = Λ̂(𝐼 + Λ̂′Ψ̂−1Λ̂) (11) 

Ψ̂ = 𝑑𝑖𝑎𝑔(𝑆 − Λ̂ Λ̂′) (12) 

Ψ̂ = 𝑑𝑖𝑎𝑔(𝑆 − Λ̂ Λ̂′) (13) 

These equations are resolved iteratively until they 
converge. For all of the Weighted Least Squares 
(WLS), Generalized Least Squares (GLS), and 
Maximum Likelihood (MLE) estimation, gradient 
algorithms have been developed: those with the 
Fletcher-Powell and Newton-Raphson methods have 
been proposed for the MLE [7-8], while the 
algorithms using the Newton-Raphson and Gauss-
Newton methods have been developed for the GLS [9-
10] with the gradient algorithms. On the other hand,
inequality-based algorithms have been developed for
the MLE excluding the GLS. The GLS solution weights
the residual matrix by the inverse of the correlation
matrix. This has the effect of weighting those
variables with low loadings even more than those
with high loadings. The WLS solution weights the
residual matrix by 1/diagonal of the inverse of the
correlation matrix. This has the effect of weighting
items with low loadings more than those with high
loadings [11].

2.3. Minimum Covariance Determinant (MCD), M 
and S Estimation Methods 

The minimum covariance determinant (MCD) 
estimator for location and scale can be found using an 
algorithm implemented by [12]. This algorithm 
essentially requires step C. In this step, an 
approximate value for the MCD method is taken, and 
it is possible to reach another value with a smaller 
determinant. The MCD algorithm can be summarized 
as follows: The algorithm aims to find subsets of 
observations that minimize the determinant of the 
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covariance matrix calculated for a sample of size n. 
The MCD method is based on the following 
assumptions. To this end, h observations are 
examined and the goal is to find a subset of h 
observations that minimize the determinant of the 
covariance matrix. Typically, h is taken as h ≈ 
[0.75*n], where [.] denotes the integer part. h 
represents the minimum number of observations 
without outliers. The mean vector calculated for h 
observations gives the estimate of the location 
parameter vector for MCD and the covariance matrix 
calculated for the same values gives the estimate of 
the scale parameter for MCD [13]. 

Another method for finding a robust covariance 
estimate is the M-estimator. The M-estimator aims to 
minimize the determinant for the multivariate 
location and scale parameters by finding the S 
estimator. The S estimator aims to find the weighted 
mean and the covariance matrix by iterations [14]. 

The M-estimator for the estimation of μ and Σ uses 
the S estimation method, which was first introduced 
in a publication referred to as [15] and then further 
studied in [16]. For a data set consisting of p-variable 
observations {𝑥1, … , 𝑥𝑛}, the S estimator for (μ, Σ) is 
obtained from the solution of 𝜎(𝑑1, … , 𝑑𝑛) = 𝑚𝑖𝑛 . 
Here, (𝑥𝑖 − 𝜇)′Σ−1(𝑥𝑖 − 𝜇)  and det(Σ) = 1. Where
𝜎 = 𝜎(𝑧), is the M-estimator of 𝑧 = {𝑧1, … , 𝑧𝑛}. It is 

defined as the solution of 
1

𝑛
∑ 𝜌 (

𝑧

𝜎
) = 𝛿 where ρ is

non-decreasing, ρ(0) = 0 and ρ(∞) = 1 and δ ∈ (0,1). 
More simply, the S estimator finds the positive 
definite symmetric matrix Σ that minimizes the μ 
vector and det(Σ). S-estimators have a close 
connection with M estimators, and the solution for (μ, 
Σ) is also the solution of an equation defining a 
weighted sample mean and a covariance matrix with 
an M estimator [13]. 

3. Results

In this study, the results have been presented based 
on derived data. For this purpose, the error variances, 
factor loadings, and the covariance matrix of 
variables were derived from a multivariate normal 
distribution. It is assumed that each variable has the 
same variance and that all the covariance between 
the variables is equal. All factor loadings are assumed 
equal in size and set to 𝜆𝑖 = 1. Thus, the data is 
derived by the following method: [17] 

1. For each observation, construct scores for the
construct with the desired number of factors derived
from a multivariate normal distribution with a mean
value µ, where the variance of each factor is 𝜎𝑓

2 and

the covariance between the two scores is γ.

2. Generate an equal number of variables for each
factor, where the score 𝑠𝑖  for the variable i is
𝑠𝑖 = 𝜇 + 𝑒(𝑖), where 𝑒(𝑖)~𝑁(0, 𝜎𝑒

2).

For the simulation study, the number of repetitions 
was selected 1000, the number of sample sizes was 
selected n = 100,500,1000, the number of variables 
was selected p = 15,20,25,30, and the number of the 
factor was selected k = 2,3,4. The average of the 
factors was selected as 5, the variance and 
covariances of the factors were 1 and 0.5, 
respectively, and variances of error term 1 were 
selected. The R program was used for simulation. 7 
methods were selected; the MLE (the maximum 
likelihood estimation), the PCA (the principal 
components), the WLS (the weighted least squares), 
the GLS (the generalized least squares) methods, the 
MCD (minimum covariance determinant), M, and S 
estimation methods.  
Then, 10 outlier observations were added to the 
dataset and the results were discussed accordingly. 

To make comparisons among methods, the method 
that gives the highest value ratio of the total variance 
explained and fit values is considered better method. 
Fit values refer to how well the factor model 
reproduces the correlation matrix. 

Table 1-2 for classical factor analysis shows that the 
MLE method is better than others for n=100, p=15, 
and k=2. The GLS method is better than others for 
n=500, p=15, and k=2. The WLS method is better than 
others for n=1000, p=15, and k=2. The WLS method 
is better than others for n=100, p=15, and k=3. The 
GLS method performs better than others for n=500, 
p=15, and k=3. The MLE method is better than others 
for n=1000, p=15, and k=3. The MLE method 
performs better than others for n=100, p=15, and 
k=4. The GLS method is better than others for n=500, 
p=15, and k=4. The WLS method performs better 
than others for n=1000, p=15, and k=4.  

In all classical methods, the ratio of total variance is 
explained, and the fit values decrease with each 
increase in sample size n=100,500 and 1000. When 
the number of variables increases, the ratio of total 
variance explained and the fit values increase as the 
sample size increases n=100,500 and 1000. In the 
classical factor analysis, in the cases where 
n=100,500 and 1000 and p=15,20,25,30, it can be 
seen that the ratio of total variance explained and the 
fit values increase considering the k=2 factor 
structure. It can be said that MLE, WLS and GLS 
methods are better than others for classical factor 
analysis. 

Table 1-2 for robust factor analysis shows that the M 
method is better than others for n=100, p=15, and 
k=2. The MCD method performs better than others 
for n=500, p=15, and k=2. The MCD method is better 
than others for n=1000, p=15, and k=2. The MCD 
method is better than others for n=100, p=15, and 
k=3. The MCD method performs better than others 
for n=500, p=15, and k=3. The MCD method is better 
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than others for n=1000, p=15, and k=3. The MCD 
method is better than others for n=100, p=15, and 
k=4. The MCD method is better than others for 
n=500, p=15, and k=4. The MCD method is better 
than others for n=1000, p=15, and k=4.  

In all robust methods, the ratio of total variance 
explained and the fit values decrease with each 
increase in sample size increases n=100,500 and 
1000. When the number of variables increases, the 
ratio of total variance explained and the fit values 
increase as the sample size increases n=100,500 and 
1000. In the robust factor analysis, it can be said that 
MCD and M methods are better than others for robust 
factor analyses. 

The classical factor analysis methods outperformed 
other techniques in terms of the ratio of total 
variance explained and fit values. This is because the 
dataset used in the analysis was derived from a 
multivariate normal distribution and did not contain 
any outliers. 

The classical factor analysis methods are based on 
the assumption that the data follows a multivariate 
normal distribution. This assumption is not always 
met in real data, but it is a good approximation for 
many datasets. The robust factor analysis methods 
are designed to be more robust to depart from the 
multivariate normal distribution, but they are not as 
efficient as the classical factor analysis methods when 
the data does follow a multivariate normal 
distribution. 

The results of the study support the theoretical 
framework of classical factor analysis. Classical factor 
analysis is best suited for datasets that follow a 
multivariate normal distribution. However, it is 
important to note that the classical factor analysis 
methods may not be as accurate for datasets that do 
not follow a multivariate normal distribution. 

In addition to the assumptions about the distribution 
of the data, the results of the study also depend on 
the sample size. The classical factor analysis methods 
are more accurate for larger sample sizes. This is 
because the classical factor analysis methods rely on 
maximum likelihood estimation, which is a more 
efficient estimator for larger sample sizes. 

Overall, the results of the study suggest that the 
classical factor analysis methods are a good choice for 
estimating the factor analysis model when the data 
follows a multivariate normal distribution and the 
sample size is large. However, it is important to note 
that the classical factor analysis methods may not be 
as accurate for datasets that do not follow a 
multivariate normal distribution. 

The analysis of the ratio of total variance explained 
and fit values indicate that classical factor analysis 
methods outperform other techniques. This is 
because the dataset used in the analysis was derived 
from a multivariate normal distribution and does not 
contain any outliers. These results support the 
theoretical framework of classical factor analysis, 
which is best suited for datasets that follow a 
multivariate normal distribution.  

Table 1. The Ratio of Total Variance Explained for Classical and Robust Factor Analysis (1000 repetitions) 
p=15 p=20 p=25 p=30 

Sample 
size 

Method k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 

100 MLE 
PCA 
WLS 
GLS 

0,5084 
0,5079 
0,5082 
0,5065 

0,5363 
0,5327 
0,5366 
0,5321 

0,5811 
0,5601 
0,5582 
0,5573 

0,5110 
0,5109 
0,5264 
0,5162 

0,5526 
0,5441 
0,5474 
0,5464 

0,5764 
0,5672 
0,5694 
0,5707 

0,5544 
0,5539 
0,5444 
0,5785 

0,5746 
0,5744 
0,5747 
0,5794 

0,6003 
0,5924 
0,5936 
0,6007 

0,5754 
0,5753 

 0,5755 
0,5783 

0,5974 
0,5973 

 0,5974 
0,6002 

0,6155 
0,6153 
0,6158 
0,6174 

MCD 
M 
S 

0,5074 
0,5078 
0,5069 

0,5354 
0,5353 
0,5323 

0,5801 
0,5774 
0,5702 

0,5183 
0,5194 
0,5071 

0,5484 
0,5471 
0,5413 

0,5744 
0,5691 
0,5688 

0,5749 
0,5634 
0,5538 

0,5764 
0,5733 
0,5744 

0,5998 
0,5993 
0,5925 

0,5768 
0,5773 
0,5712 

0,5935 
0,5994 
0,5923 

0,6168 
0,6171 
0,6161 

500 MLE 
PCA 
WLS 
GLS 

0,4914 
0,4910 
0,4913 
0,4915 

0,5074 
0,5071 
0,5075 
0,5077 

0,5420 
0,5415 
0,5430 
0,5432 

0,5027 
0,5026 
0,5030 
0,5108 

0,5316 
0,5315 
0,5356 
0,5436 

0,5574 
0,5564 
0,5573 
0,5626 

0,5125 
0,5124 
0,5126 
0,5128 

0,5344 
0,5343 
0,5345 
0,5352 

0,5745 
0,5741 
0,5744 
0,5749 

0,5356 
0,5352 
0,5355 
0,5357 

0,5536 
0,5533 
0,5537 
0,5539 

0,5823 
0,5819 
0,5830 
0,5832 

MCD 
M 
S 

0,4911 
0,4910 
0,4902 

0,5073 
0,5063 
0,5045 

0,5364 
0,5360 
0,5332 

0,5092 
0,5088 
0,5036 

0,5315 
0,5311 
0,5304 

0,5569 
0,5560 
0,5547 

0,5117 
0,5110 
0,5095 

0,5337 
0,5332 
0,5330 

0,5742 
0,5731 
0,5711 

0,5325 
0,5327 
0,5306 

0,5515 
0,5519 
0,5502 

0,5811 
0,5817 
0,5800 

1000 MLE 
PCA 
WLS 
GLS 

0,4823 
0,4816 
0,4826 
0,4821 

0,4936 
0,4928 
0,4944 
0,4934 

0,5211 
0,5200 
0,5223 
0,5207 

0,4918 
0,4911 
0,4927 
0,4936 

0,5148 
0,5144 
0,5156 
0,5168 

0,5448 
0,5432 
0,5449 
0,5464 

0,5085 
0,5082 
0,5085 
0,5088 

0,5247 
0,5244 
0,5248 
0,5253 

0,5539 
0,5533 
0,5542 
0,5549 

0,5215 
0,5208 
0,5218 
0,5226 

0,5399 
0,5398 
0,5404 
0,5411 

0,5712 
0,5705 
0,5726 
0,5733 

MCD 
M 
S 

0,4805 
0,4800 
0,4791 

0,4918 
0,4914 
0,4904 

0,5198 
0,5195 
0,5185 

0,4892 
0,4889 
0,4877 

0,5140 
0,5137 
0,5130 

0,5428 
0,5422 
0,5406 

0,5066 
0,5061 
0,5038 

0,5231 
0,5220 
0,5222 

0,5538 
0,5521 
0,5510 

0,5195 
0,5192 
0,5177 

0,5384 
0,5380 
0,5361 

0,5702 
0,5700 
0,5690 
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Table 2. The Fit Values for Classical and Robust Factor Analysis (1000 repetitions) 

Table 3-4 for classical factor analysis with 10 
outliers shows that the MLE method is better than 
others for n=100, p=15, and k=2. The MLE method 
performs better than others for n=500, p=15, and 
k=2. The MLE method is better than others for 
n=1000, p=15, and k=2. The MLE method is better 
than others for n=100, p=15, and k=3. The MLE 
method performs better than others for n=500, 
p=15, and k=3. The MLE method is better than 
others for n=1000, p=15, and k=3. The GLS method 
is better than others for n=100, p=15, and k=4. The 
GLS method performs better than others for n=500, 
p=15, and k=4. The MLE method is better than 
others for n=1000, p=15, and k=4.  

Considering all classical methods, the ratio of total 
variance explained and the fit values decrease with 
each increase in sample size n=100,500 and 1000. 
When the number of variables increases, the ratio of 
total variance explained and the fit values increase 
as the sample size increases n=100,500 and 1000. It 
can be said that MLE and GLS methods are better 
than others for classical factor analysis. 

Table 3-4 for robust factor analysis with 10 outliers 
shows that the M method is better than others for 
n=100, p=15, and k=2. The MCD method performs 
etter  than others  for   n=500,   p=15, and  k=2.   The 

MCD method is better than others for n=1000, p=15, 
and k=2. The MCD method is better than others for 
n=100, p=15, and k=3. The MCD method performs 
better than others for n=500, p=15, and k=3. The 
MCD method is better than others for n=1000, p=15, 
and k=3. The MCD method is better than others for 
n=100, p=15, and k=4. The MCD method performs 
better than others for n=500, p=15, and k=4. The 
MCD method is better than others for n=1000, p=15, 
and k=4.  

When considering all robust factor analysis 
methods, it can be seen that the ratio of total 
variance explained and fit values decreases as the 
sample size increases n=100, 500 and 1000. 
However, as the number of variables increases, the 
ratio of total variance explained and fit values 
increases for each sample size n=100, 500 and 
1000. This suggests that the MCD and M methods 
are better than others for robust factor analysis. The 
analysis of the ratio of total variance explained and 
fit values shows that robust factor analysis methods 
outperform classical methods. This is particularly 
important since the dataset used in the analysis 
includes 10 outliers, indicating that robust factor 
analysis is a more suitable approach for such data, 
as supported by theoretical expectations. 

p=15 p=20 p=25 p=30 

Sample 
size  

Method k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 

100 MLE 
PCA 
WLS 
GLS 

0,9267 
0,9265 
0,9265 
0,9261 

0,9359 
0,9348 
0,9361 
0,9345 

0,9446 
0,9432 
0,9436 
0,9427 

0,9484 
0,9482 
0,9496 
0,9488 

0,9569 
0,9551 
0,9558 
0,9556 

0,9614 
0,9610 
0,9612 
0,9613 

0,9636 
0,9626 
0,9616 
0,9704 

0,9727 
0,9726 
0,9727 
0,9733 

0,9754 
0,9744 
0,9753 
0,9768 

0,9764 
0,9763 
0,9765 
0,9770 

0,9794 
0,9792 
0,9795 
0,9798 

0,9813 
0,9811 
0,9817 
0,9822 

MCD 
M 
S 

0,9262 
0,9263 
0,9261 

0,9354 
0,9353 
0,9348 

0,9445 
0,9442 
0,9439 

0,9490 
0,9492 
0,9473 

0,9564 
0,9562 
0,9543 

0,9612 
0,9610 
0,9610 

0,9701 
0,9675 
0,9625 

0,9732 
0,9731 
0,9729 

0,9753 
0,9751 
0,9743 

0,9767 
0,9768 
0,9759 

0,9794 
0,9795 
0,9788 

0,9819 
0,9820 
0,9813 

500 MLE 
PCA 
WLS 
GLS 

0,9168 
0,9165 
0,9167 
0,9170 

0,9308 
0,9305 
0,9310 
0,9313 

0,9426 
0,9427 
0,9431 
0,9435 

0,9337 
0,9337 
0,9340 
0,9351 

0,9458 
0,9456 
0,9462 
0,9465 

0,9481 
0,9467 
0,9476 
0,9485 

0,9554 
0,9551 
0,9552 
0,9558 

0,9623 
0,9622 
0,9624 
0,9631 

0,9718 
0,9714 
0,9716 
0,9726 

0,9761 
0,9757 
0,9759 
0,9764 

0,9780 
0,9777 
0,9782 
0,9784 

0,9788 
0,9786 
0,9793 
0,9798 

MCD 
M 
S 

0,9164 
0,9162 
0,9160 

0,9262 
0,9261 
0,9221 

0,9388 
0,9385 
0,9354 

0,9347 
0,9343 
0,9335 

0,9455 
0,9453 
0,9446 

0,9470 
0,9468 
0,9456 

0,9540 
0,9535 
0,9526 

0,9611 
0,9608 
0,9605 

0,9715 
0,9706 
0,9697 

0,9741 
0,9744 
0,9730 

0,9764 
0,9766 
0,9751 

0,9782 
0,9784 
0,9777 

1000 MLE 
PCA 
WLS 
GLS 

0,9071 
0,9066 
0,9077 
0,9072 

0,9243 
0,9239 
0,9248 
0,9244 

0,9310 
0,9300 
0,9324 
0,9320 

0,9233 
0,9211 
0,9244 
0,9257 

0,9370 
0,9367 
0,9376 
0,9379 

0,9453 
0,9442 
0,9455 
0,9463 

0,9485 
0,9483 
0,9485 
0,9489 

0,9516 
0,9513 
0,9517 
0,9524 

0,9689 
0,9683 
0,9692 
0,9698 

0,9724 
0,9719 
0,9728 
0,9731 

0,9745 
0,9742 
0,9757 
0,9759 

0,9771 
0,9762 
0,9776 
0,9788 

MCD 
M 
S 

0,9055 
0,9053 
0,9043 

0,9210 
0,9207 
0,9201 

0,9295 
0,9292 
0,9281 

0,9204 
0,9201 
0,9191 

0,9361 
0,9357 
0,9349 

0,9431 
0,9427 
0,9413 

0,9469 
0,9466 
0,9454 

0,9505 
0,9502 
0,9493 

0,9677 
0,9671 
0,9654 

0,9604 
0,9601 
0,9585 

0,9737 
0,9733 
0,9722 

0,9755 
0,9752 
0,9746 
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Table 3. The Ratio of Total Variance Explained for Classical and Robust Factor Analysis with 10 outliers (1000 repetitions) 
p=15 p=20 p=25 p=30 

Sample 
Size Method k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 

100 MLE 
PCA 
WLS 
GLS 

0,4069 
0,4050 
0,3794 
0,3905 

0,4793 
0,4785 
0,4461 
0,4565 

0,4993 
0,4973 
0,5211 
0,5228 

0,4212 
0,4202 
0,4205 
0,4152 

0,4936 
0,4911 
0,4747 
0,4651 

0,5222 
0,5115 
0,5068 
0,5043 

0,4822 
0,4716 
0,4723 
0,4727 

0,5064 
0,5052 
0,5093 
0,5061 

0,5302 
0,5283 
0,5468 
0,5465 

0,5227 
0,5195 
0,5214 
0,5022 

0,5469 
0,5324 
0,5386 
0,5345 

0,5763 
0,5685 
0,5758 
0,5694 

MCD 
M 
S 

0,5153 
0,5067 
0,5134 

0,5712 
0,5517 
0,5491 

0,6046 
0,6003 
0,5841 

0,5498 
0,5527 
0,5234 

0,5823 
0,5911 
0,5579 

0,6186 
0,6225 
0,5702 

0,5985 
0,6013 
0,5642 

0,6218 
0,6234 
0,5829 

0,6466 
0,6532 
0,6091 

0,5792 
0,5764 
0,5666 

0,6137 
0,6131 
0,5886 

0,6237 
0,6231 
0,6083 

500 MLE 
PCA 
WLS 
GLS 

0,4005 
0,3921 
0,3736 
0,3882 

0,4538 
0,4529 
0,4432 
0,4537 

0,4842 
0,5001 
0,5012 
0,5119 

0,4185 
0,4171 
0,4033 
0,4029 

0,4757 
0,4744 
0,4601 
0,4623 

0,5151 
0,5088 
0,5065 
0,5142 

0,4470 
0,4464 
0,4342 
0,4355 

0,4823 
0,4814 
0,4820 
0,4813 

0,5276 
0,5244 
0,5253 
0,5255 

0,4681 
0,4606 
0,4623 
0,4642 

0,5126 
0,5086 
0,5117 
0,5094 

0,5688 
0,5653 
0,5675 
0,5661 

MCD 
M 
S 

0,5116 
0,4911 
0,4923 

0,5394 
0,5275 
0,5283 

0,5507 
0,5464 
0,5421 

0,5482 
0,5473 
0,5034 

0,5743 
0,5712 
0,5334 

0,6035 
0,6004 
0,5587 

0,5662 
0,5636 
0,5427 

0,5889 
0,5826 
0,5522 

0,6226 
0,6213 
0,5746 

0,5735 
0,5714 
0,5520 

0,6076 
0,6062 
0,5774 

0,6233 
0,6228 
0,5956 

1000 MLE 
PCA 
WLS 
GLS 

0,3996 
0,3723 
0,3877 
0,3898 

0,4382 
0,4344 
0,4327 
0,4366 

0,4768 
0,4731 
0,4742 
0,4753 

0,4039 
0,4005 
0,4024 
0,4013 

0,4565 
0,4514 
0,4543 
0,4552 

0,4888 
0,4849 
0,5858 
0,4877 

0,4236 
0,4206 
0,4221 
0,4227 

0,4751 
0,4722 
0,4737 
0,4740 

0,5077 
0,5038 
0,5065 
0,5071 

0,4543 
0,4514 
0,4525 
0,4531 

0,4974 
0,4927 
0,4951 
0,4962 

0,5228 
0,5201 
0,5216 
0,5220 

MCD 
M 
S 

0,4976 
0,4897 
0,4888 

0,5226 
0,5199 
0,5195 

0,5362 
0,5347 
0,5322 

0,5222 
0,5227 
0,5029 

0,5561 
0,5542 
0,5301 

0,5744 
0,5727 
0,5723 

0,5421 
0,5416 
0,5401 

0,5511 
0,5507 
0,5500 

0,5672 
0,5666 
0,5643 

0,5517 
0,5513 
0,5507 

0,5688 
0,5683 
0,5665 

0,5844 
0,5837 
0,5807 

Table 4. The Fit Values for Classical and Robust Factor Analysis with 10 outliers (1000 repetitions)

4. Real-Life Application

Athletics is one of the most widely followed sports 
events worldwide. Countries prepare for 
competitions throughout the year. This study used 
data obtained before competitions on a country 
basis  for female  athletics  athletes.  In  this  dataset,  

100 m (s), 200 m (s), 400 m (s), 800 m (min), 1500 
m (min), 3000 m (min), and marathon (min) values 
were taken as independent variables. The analysis 
used data from 55 countries. The data was obtained 
from https://towardsdatascience.com/factor-
analysis-on-women-track-records-data-with-r-and-
python-6731a73cd2e0 [18]. 

p=15 p=20 p=25 p=30 
Sample 

size  
Method k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 k=2 k=3 k=4 

100 MLE 
PCA 
OLS 
WLS 

  GLS 

0,8122 
0,8113 
0,8116 
0,7711 
0,8019 

0,8479 
0,8478 
0,8477 
0,8012 

0,8424 

0,8618 
0,8614 
0,8611 
0,8828 
0,8855 

0,8391 
0,8380 
0,8377 
0,8385 
0,8362 

0,9169 
0,9154 
0,9143 
0,9137 
0,9132 

0,9382 
0,9363 
0,9311 
0,9359 
0,9343 

0,9323 
0,9311 
0,9317 
0,9311 
0,9319 

0,9381 
0,9372 
0,9375 
0,9386 
0,9377 

0,9493 
0,9481 
0,9489 
0,9504 
0,9500 

0,9543 
0,9536 
0,9540 
0,9551 
0,9528 

0,9725 
0,9683 
0,9721 
0,9704 

0,9697 

0,9788 
0,9775 
0,9780 
0,9783 
0,9778 

MCD 
M 
S 

0,9282 
0,9273 
0,9265 

0,9617 
0,9608 
0,9492 

0,9777 
0,9769 
0,9734 

0,9562 
0,9623 
0,9518 

0,9769 
0,9782 
0,9646 

0,9821 
0,9834 
0,9703 

0,9794 
0,9816 
0,9645 

0,9824 
0,9835 
0,9699 

0,9902 
0,9914 
0,9816 

0,9821 
0,9816 
0,9769 

0,9832 
0,9826 
0,9787 

0,9953 
0,9947 
0,9901 

500 MLE 
PCA 
OLS 
WLS 

  GLS 

0,8105 
0,8100 
0,8102 
0,8075 
0,8084 

0,8459 
0,8453 
0,8451 
0,8454 
0,8457 

0,8520 
0,8532 
0,8556 
0,8544 
0,8568 

0,8362 
0,8351 
0,8347 
0,8334 
0,8326 

0,8944 
0,8921 
0,8907 
0,8884 
0,8893 

0,9227 
0,9209 
0,9213 
0,9204 
0,9222 

0,8611 
0,8607 
0,8603 
0,8593 
0,8586 

0,9005 
0,8994 
0,8998 
0,9002 
0,8996 

0,9352 
0,9340 
0,9343 
0,9345 

0,9349 

0,9446 
0,9403 
0,9406 
0,9411 
0,9425 

0,9623 
0,9597 
0,9604 
0,9616 
0,9601 

0,9715 
0,9688 
0,9694 
0,9706 
0,9691 

MCD 
M 
S 

0,9244 
0,9201 
0,9203 

0,9584 
0,9567 
0,9576 

0,9612 
0,9609 
0,9601 

0,9427 
0,9412 
0,9356 

0,9652 
0,9623 
0,9588 

0,9781 
0,9723 
0,9675 

0,9587 
0,9576 
0,9531 

0,9743 
0,9734 
0,9671 

0,9815 
0,9806 
0,9703 

0,9758 
0,9749 
0,9736 

0,9781 
0,9777 
0,9756 

0,9836 
0,9822 
0,9778 

1000 MLE 
PCA 
OLS 
WLS 

  GLS 

0,8014 
0,7962 
0,8003 
0,7978 
0,7984 

0,8354 
0,8323 
0,8344 
0,8335 
0,8351 

0,8423 
0,8402 
0,8409 
0,8412 
0,8415 

0,8267 
0,8211 
0,8236 
0,8245 
0,8225 

0,8846 
0,8820 
0,8827 
0,8834 
0,8837 

0,9124 
0,9105 
0,9112 
0,9117 
0,9121 

0,8515 
0,8477 
0,8483 
0,8491 
0,8497 

0,8907 
0,8884 
0,8890 
0,8892 
0,8898 

0,9251 
0,9237 
0,9241 
0,9243 

0,9246 

0,9348 
0,9308 
0,9316 
0,9322 
0,9329 

0,9528 
0,9499 
0,9508 
0,9518 
0,9523 

0,9606 
0,9570 
0,9581 
0,9588 
0,9594 

MCD 
M 
S 

0,9143 
0,9135 
0,9126 

0,9481 
0,9476 
0,9465 

0,9510 
0,9504 
0,9490 

0,9324 
0,9317 
0,9251 

0,9556 
0,9547 
0,9486 

0,9680 
0,9675 
0,9572 

0,9488 
0,9479 
0,9410 

0,9645 
0,9636 
0,9597 

0,9717 
0,9708 
0,9634 

0,9666 
0,9659 
0,9651 

0,9757 
0,9753 
0,9742 

0,9795 
0,9792 
0,9786 
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Table 5 shows the results of evaluating MLE and 
GLS techniques for classic factor analysis. The table 
shows that the ratio of total variance explained and 
the fit values are higher for the MLE method than 
for the GLS method. This suggests that the MLE 
method is a better choice for estimating the factor 
analysis model. However, the table also shows that 
the GLS method produces similar results to the MLE 
method. This suggests that the GLS method is a 
good choice for estimating the factor analysis model 
when the MLE method is not available or when the 
data does not meet the assumptions of the MLE 
method. 

Table 5 also shows that there is some uncertainty 
regarding which factor the 400m variable belongs 
to when the GLS method is used. This is because the 
400m variable has high loadings on both factors. 
This suggests that the 400m variable is a measure of 
both speed and endurance. 

The results of the study suggest that the MLE 
method is a better choice for estimating the factor 
analysis model. However, the GLS method is a good 
choice for estimating the factor analysis model 
when the MLE method is not available or when the 
data does not meet the assumptions of the MLE 
method. 

Table 5. The results of classic factor analysis (CFA) for 
athletics data (MLE and GLS) 

CFA 
(GLS) 

CFA 
(MLE) 

F1 F2 F1 F2 
100 m 0,803 0,811 

200 m 0,773 0,760 
400 m 0,556 0,558 0,623 

800 m 0,899 0,910 
1500 m 0,564 0,533 

3000 m 0,691 0,669 

Maraton 0,666 0,634 
Var. Exp. 0,388 0,332 0,389 0,332 

Total Var. Exp. 0,720 0,721 
Fit Value 0,971 0,972 

The graphs in Figure 1 show the distribution of the 
data for each of the seven variables. The number of 
outliers detected in the dataset is 17. 

Figure 1. The Adj. Chi-Square Graph for Athletics Data 

Based on the results of the robust factor analysis, a 
2-factor structure was used and the analysis was
continued using the two best methods, MCD and M
methods. The results of this analysis are presented
in Table 6. The results of the study suggest that the
M method is a better choice for factor analysis in
this situation. The M method is a robust factor
analysis method that is less sensitive to outliers.
This is important because the dataset contains
outliers. The results of the study also suggest that
the 400m variable belongs to the second factor. This
is consistent with the theoretical framework of
factor analysis. The 400m variable is a measure of
both speed and endurance. It is therefore likely to
be associated with both factors.

The results of the study can be summarized as 
follows: 

i. The M method is a better choice for factor analysis
in this situation.
ii. The 400m variable belongs to the second factor.
iii. The 100m, 200m, and 400m variables belong to
the short-distance running factor (F2).
iv. The 800m, 1500m, 3000m, and marathon
variables belong to the middle and long-distance
running factor (F1).

The results of the study can be used to improve 
athletic training programs and to help athletes 
improve their performance. The results suggest that 
athletes who want to improve their performance in 
short-distance running should focus on training for 
speed. Athletes who want to improve their 
performance in middle and long-distance running 
should focus on training for endurance.  

The results of the study are also interesting from a 
theoretical perspective. This is an important finding 
because it suggests that the M method can be used 
to analyze data that contains outliers. 

Table 6. The results of robust factor analysis (RFA) for 
athletics data (MCD and M) 

RFA 
(MCD) 

RFA 
(M) 

F1 F2 F1 F2 
100 m 0,906 0,895 
200 m 0,902 0,905 

400 m 0,703 0,752 
800 m 0,844 0,833 

1500 m 0,936 0,916 
3000 m 0,888 0,872 

Maraton 0,656 0,733 

Var. Exp. 0,491 0,388 0,494 0,418 
Total Var. Exp. 0,879 0,912 

Fit Value 0,972 0,973 
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5. Discussion and Conclusion

Factor analysis is a simulation study that is used to 
test the effectiveness of this method and to 
determine how accurate the factor analysis results 
are. These studies are also used to evaluate how 
factors such as different number of factors, sample 
sizes or distribution of sample affect the results of 
factor analysis. It is the results of these studies that 
help to determine the most suitable conditions for 
the use of factor analysis methods. 

In this study, classical and robust factor analysis 
methods, and simulation studies carried out in 
different number of variables, number of factors 
and sample sizes were evaluated. The study 
provides valuable insights into the performance of 
factor analysis methods. The results of the study can 
be used to help researchers choose the most 
suitable factor analysis method for their data.  

In general, when classic factor analysis is applied to 
a dataset that is derived from a multivariate normal 
distribution, the best methods are Maximum 
Likelihood Estimation (MLE), Weighted Least 
Squares (WLS), and Generalized Least Squares 
(GLS). Overall, classic factor analysis has been found 
to produce better results, likely because the data 
used in this analysis is derived from a multivariate 
normal distribution. 

On the other hand, the covariance matrix is easily 
affected by outliers, and the eigenvalue and 
eigenvector, which are calculated according to the 
covariance matrix, are sensitive to outliers too, thus 
leading to deviation in the results.  

This study investigated when robust covariance 
matrix is used that reduces the influence of outliers, 
the eigenvalue and eigenvector calculated by that 
are less sensitive to outliers, thus affecting robust 
factor analysis results. 

When robust factor analysis techniques are applied 
to datasets that contain outliers, they tend to 
produce better results compared to other 
techniques. This is because robust methods, such as 
M and MCD, are designed to handle outliers more 
effectively and result in a higher the ratio of total 
variance explained and better-fit values. In 
situations where outliers are present, using robust 
factor analysis techniques is likely to produce better 
results. 

Finally, this study investigated robust estimation 
methods as alternatives to classical estimation. The 
results of the simulation study show that such 
methods are available for factor analysis, and give 
clear evidence that all robust estimation methods 
under investigation have a high efficiency by 
outliers.  On the contrary, classical factor analysis is 

strongly influenced by the uncontrolled effects of 
outliers which makes them often totally unreliable. 
Especially MCD and M methods turn out to be very 
appealing estimation methods for robust factor 
analysis. 

Declaration of Ethical Code 

In this study, we undertake that all the rules required 
to be followed within the scope of the "Higher 
Education Institutions Scientific Research and 
Publication Ethics Directive" are complied with and 
that none of the actions stated under the heading 
"Actions Against Scientific Research and Publication 
Ethics" are not carried out. 

References 

[1] Pison, G., Rousseeuw, P. J., Filzmoser, P., Croux,
C. 2003. Robust Factor Analysis. Journal of
Multivariate Analysis, 84(1), 145-172.

[2] Er, F., Sönmez, H. 2006. Öğrenci Başarı Notları
İçin Robust Faktör Analizi Uygulaması.
Anadolu Üniversitesi Bilim ve Teknoloji
Dergisi, 7(1), 149-155.

[3] Browne, M. W., Shapiro, A. 1988. Robustness of
normal theory methods in the analysis of linear
latent variable models. British Journal of
Mathematical and Statistical Psychology, 41,
193-208.

[4] Mooijaart, A., Bentler, P. M. 1991. Robustness
of normal theory statistics in structural
equation models. Statistica Nederlandica, 45,
159-171.

[5] Johnson, R. A., Wichern, D.W. 2007. Applied
Multivariate Statistical Analysis. Fifth Edition,
Pearson Education Int., New Jersey.

[6] Rencher, A. C. 2002. Methods of Multivariate
Analysis. Second Edition, John Wiley & Sons,
Inc.

[7] Jennrich, R. I., Robinson, S.M. 1969. A Newton-
Raphson Algorithm for Maximum Likelihood
Factor Analysis,.Psychometrika, 34, 111 -123.

[8] Jöreskog, K. G. 1967. Some Contributions to
Maximum Likelihood Factor Analysis.
Psychometrika, 32, 443-482.

[9] Jöreskog, K. G., Goldberger, A.S. 1972. Factor
Analysis by Generalized Least Squares.
Psychometrika, 37, 243.

[10] Lee, S. Y. 1978. The Gauss-Newton Algorithm
for the Weighted Least Squares Factor
Analysis. Journal of the Royal Statistical
Society: Series D (The Statistician), 27, 103-
114.



B. Ergül et al. / Comparison of Classical Factor and Robust Factor Analyses Methods

410 

[11] Revelle, W. 2022.  How To: Use the psych
package for Factor Analysis and data
reduction. R package, R Core Team, 1-95.

[12] Rousseeuw, P. J., Van Driessen, K. 1999. A fast
algorithm for the minimum covariance
determinant estimator. Technometrics, 41(3),
212-223.

[13] Todorov, V., Filzmoser, P. 2009. An Object-
Oriented Framework for Robust Multivariate
Analysis. Journal of Statistical Software, 32(3),
2-47.

[14] Fan, J., Wang, W., Zhong, Y. 2016. Robust
Covariance Estimation for Approximate Factor
Models. arXiv:1602.00719v1, 1-31.

[15] Davies, P. L. 1987. Asymptotic Behavior of S-
Estimators of Multivariate Location
Parameters and Dispersion Matrices. The
Annals of Statistics, 15, 1269–1292.

[16] Lopuhaa, H. P. 1989. On the Relation Between
S-Estimators and M-Estimators of Multivariate
Location and Covariance. The Annals of
Statistics, 17, 1662–1683.

[17] Törmanen, J. 2012. Systems intelligence
inventory. Student Project, Master’s thesis,
Aalto University School of Science.

[18] Pramodithha, R. 2023. Web Page Access
Adress:
https://towardsdatascience.com/factor-
analysis-on-women-track-records-data-with-r-
and-python-6731a73cd2e0


