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Abstract − The sensitivity of the least-squares estimation in a regression model
is impacted by multicollinearity and autocorrelation problems. To deal with the
multicollinearity, Ridge, Liu, and Ridge-type biased estimators have been presented
in the statistical literature. The recently proposed Kibria-Lukman estimator is one
of the Ridge-type estimators. The literature has compared the Kibria-Lukman esti-
mator with the others using the mean square error criterion for the linear regression
model. It was achieved in a study conducted on the Kibria-Lukman estimator’s
performance under the first-order autoregressive erroneous autocorrelation. When
there is an autocorrelation problem with the second-order, evaluating the perfor-
mance of the Kibria-Lukman estimator according to the mean square error criterion
makes this paper original. The scalar mean square error of the Kibria-Lukman es-
timator under the second-order autoregressive error structure was evaluated using
a Monte Carlo simulation and two real examples, and compared with the Gener-
alized Least-squares, Ridge, and Liu estimators. The findings revealed that when
the variance of the model was small, the mean square error of the Kibria-Lukman
estimator gave very close values with the popular biased estimators. As the model
variance grew, Kibria-Lukman did not give fairly similar values with popular biased
estimators as in the model with small variance. However, according to the mean
square error criterion the Kibria-Lukman estimator outperformed the Generalized
Least-Squares estimator in all possible cases.

Keywords − Autocorrelation, multicollinearity, second-order autoregressive errors, Kibria-Lukman estimator

Mathematics Subject Classification (2020) − 62J07, 62M10

1. Introduction

Regression analysis is widely used to create a functional model based on the relationship between an
observed dependent variable (response) and one or more observed independent variables (regressors).
A linear regression model is one in which the variables are included in the model as a first-order
polynomial. The model is called a simple linear regression model if there is only one independent
variable, and a multiple linear regression model if there is more than one independent variable. The
following is a formula for a multiple linear regression model with p independent variables:

y = β0 + β1x1 + β2x2 + ...+ βpxp + ε (1)

It takes on the matrix form as
y = Xβ + ε
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where y is an n × 1 vector of observed response variable, X = [1, x], x = (x1, x2, .., xp) with xj =
(x1j , x2j , ..., xnj)

′ for j = 1, ..., p, is an n× (p+1) vector of known regressor matrix whose first column
equals to one, β is an (p + 1) × 1 vector of unknown regression parameters and ε is an n × 1 vector
of errors with properties E(ε) = 0 and E(εε′) = σ2In. The unknown regression parameters must be
calculated to determine the functional relationship between the dependent and independent variables.
If the following assumptions are met, the Ordinary Least-Squares (OLS) can be used to estimate
unknown parameters in a regression model: -Regressor matrix is a non-stochastic matrix - Regressor
matrix is a full column rank - Response is a linear function of regressors - The error term is normally
distributed with zero mean and constant variance. OLS estimation procedure can be applied which is
based on the minimization of the sum of squares error

min
β

{
(Y −Xβ)′ (Y −Xβ)

}
as

β̂OLS =
(
X ′X

)−1
X ′Y

In these circumstances, OLS is the best linear unbiased estimator (BLUE) with E(β̂OLS) = β and
cov(β̂OLS) = σ2 (X ′X)−1.

Multicollinearity is a term used in data analytics to indicate the occurrence of two regressors
that are shown to be associated in a linear regression model. If the matrix X ′X is not linearly
independent, it will not be full column rank. In this case, the matrix X ′X becomes ill-conditioned.
The condition number, correlation coefficient, and variance inflation factor are utilized to determine
the multicollinearity in a dataset. The condition number, κ, is a value calculated from the eigenvalues
of the X ′X matrix’s characteristic roots or eigenvalues. κ, including λ1, λ2, ..., λn are the eigenvalues

of X ′X, is determined by κ =
√

λmax
λmin

. According to Belsley et al. [1], there is no substantial problem

with multicollinearity if the κ value is less than 10, moderate to strong collinearity if the κ value
is between 30 and 100, and severe multicollinearity if the κ value is greater than 100. It is also a
sign that the two variables generate multicollinearity when the correlation coefficient between any two
independent variables is close to 1 in absolute value or statistically significant. Multicollinearity can
be regarded as a result of these variables. In this scenario, some biased estimators defined in Equation
1 to deal with multicollinearity are presented below. Hoerl et al. [2] suggested a ridge estimator under
Equation 1 based on the solution of

min
β

{
(Y −Xβ)′ (Y −Xβ) + k

(
β′β − c

)}
where c is a constant and k is a lagrangian multiplier called the biasing parameter as

β̂ridge =
(
X ′X + kIp

)−1
X ′Y, k > 0

It is obvious that the ridge regression’s effectiveness will change depending on the k-biasing parameter.
As a result, the statistical literature includes the proposed biasing parameters according to various
criteria (see, [2–4]). Condition number of X ′X + kIp is a decreasing function of k. As a result, as k
increases, the condition number decreases dramatically [5]. In practice, however, k is small, and this
may not be enough to solve the ill-conditioned.

Liu [6] proposed a liu estimator which is an alternative to ridge based on the solution of

min
β

{
(Y −Xβ)′ (Y −Xβ) + (β − dβ̂)(β − dβ̂)′

}
as

β̂liu =
(
X ′X + Ip

)−1 (
X ′X + dIp

)
β̂, 0 < d < 1

Özkale and Kaçıranlar [7] stated that the liu estimator is more advantageous than the ridge because
it is a linear function of d. Numerous studies on the choice of the d parameter in the liu estimator can
be found in the literature (see, [6–8]). Kibria and Lukman [9] proposed a new biased estimator called
as Kibria-Lukman (KL) estimator to cope with the multicollinearity which is based on the solving of
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min
β

{
(Y −Xβ)′ (Y −Xβ) + k

[
(β + β̂)′(β + β̂)− c

]}
as

β̂kl =
(
X ′X + kIp

)−1 (
X ′X − kIp

)
β̂, k > 0

The user of biased estimators must select a biasing parameter (k or d) in order to see improvements
in the estimates [10]. There have been numerous studies on the biasing parameter selection processes
(see, [3, 7, 9]).

Many KL estimators have been described, each based on a different distribution (inverse Gaussian
regression model, Gamma regression model, Poisson regression model, distributed lag model). (see,
[11–15]). The goal of the paper is to apply the mean square error (MSE) criterion to extend the KL
estimator’s performance from non-autoregressive or first-order autoregressive processes which are in
the statistical literature to second-order autoregressive process.

The article is structured as follows: The general linear regression model, error structures, and
estimators are provided in Section 2. The method for calculating the MSE, which is used to assess
model performance for any estimator, is provided in the next section. Section 4 discusses the Monte
Carlo simulation’s layout and findings. In Section 5, the performance of the KL estimator in the
second-order autoregressive model is examined over two real datasets. The paper’s findings and
recommendations are presented in the final section.

2.General Linear Regression Model, Error Structure and Estimators

When the variance-covariance matrix of the errors is not diagonal form that is E(εε′) = σ2
εV , V ̸= In

it is called as general linear regression (GLR) model. There is a violation of the assumption “The
error term is normally distributed with zero mean and constant variance”, and in this case, the
autocorrelation problem arises. Therefore, the errors are correlated. Since V n × n matrix assumed
that known is symmetric and positive definite, then there exits a non-singular n × n matrix P such
that V −1 = P ′P . Premultiplying both sides of Equation 1 by P gives the transformed model as

Py = PXβ + Pε (2)

In the transformed model new error terms has covariance matrix as E
[
Pε (Pε)′

]
= σ2In. Therefore,

by applying the least-squares estimation procedure which based on minβ
{
(PY − PXβ)′ (PY −Xβ)

}
and by solving the normal equations, generalized least-squares estimator (GLS) obtained as

β̂GLS = (X ′V −1X)−1X ′V −1y

GLS is a BLUE estimator with E[β̂GLS ] = β and cov(β̂GLS) = σ2(X ′V −1X)−1 under Equation 2.
In models with an autocorrelation problem, multicollinearity can also occur. Many biased estimators
proposed under the linear regression model has also been extended to GLR models. Ridge Regression
(RR) estimator for Equation 2 given by Trenkler [16] as

β̂RR = (X ′V −1X + kIp)
−1X ′V −1y, k > 0

RR is a biased estimator with

bias(β̂RR, β) = −k
(
X ′V −1X + kIn

)−1
β

and variance-covariance matrix is

cov(β̂RR, β) = σ2
(
X ′V −1X + kIp

)−1
X ′V −1X

(
X ′V −1X + kIp

)−1

Noted that, because β and σ2 population parameters are unknown in real-world applications, GLS
estimations which are the best estimators of these parameters under Equation 2, are utilized. Liu
estimator for Equation 2 given by Kaçiranlar [17] as

β̂Liu = (X ′V −1X + Ip)
−1(X ′V −1y + dβ̂GLS), 0 < d < 1
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This is a biased estimator also, and the expected value and the variance-covariance matrix as follows:

bias(β̂Liu, β) = (d− 1)(X ′V −1X + Ip)
−1β

and

cov(β̂Liu, β) = σ2
(
X ′V −1X + Ip

)−1
(X ′V −1X + dIp)(X

′V −1X)−1(X ′V −1X + dIp)
(
X ′V −1X + Ip

)−1

In this study, two different structures of autocorrelation, which is another problem apart from
multicollinearity, were examined. The first-order autoregressive (AR(1)) model is one of them, while
the second-order autoregressive model (AR(2)) is the other. The error terms for the AR(1) process
are satisfied

εi = ρεi−1 + ui (3)

where E(ui) = 0, E(u2i ) = σ2
u and E(uiuj) = 0 , i ̸= j. This process will be stationary if |ρ| < 1. The

matrix P for the AR(1) process is (see [18–20])

P =



√
1− ρ2 0 0 . . . 0 0
−ρ 1 0 . . . 0 0
0 −ρ 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . −ρ 1


(4)

In the AR(2) process the errors generated by

εi = ϕ1εi−1 + ϕ2εi−2 + ui (5)

where E(ui) = 0, E(u2i ) = σ2
u, and E(uiuj) = 0, i ̸= j. For the AR(2) process to be stationary, the

parameters ϕ1 and ϕ2 must take values such that ϕ1 + ϕ2 < 1, ϕ2 − ϕ1 < 1 and −1 < ϕ2 < 1. The P
matrix under the AR(2) structure is given as Judge et al. [21]

P =



q11 0 0 0 . . . 0 0

−ρ1
√

1− ϕ2
2

√
1− ϕ2

2 0 0 . . . 0 0
−ϕ2 −ϕ1 1 0 . . . 0 0
0 −ϕ2 −ϕ1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0
0 0 0 0 . . . −ϕ1 1


(6)

where q11 =
{

(1+ϕ2)[(1−ϕ2)2−ϕ2
1]

1−ϕ2

}1/2

and ρ1 =
ϕ1

1−ϕ2
.

KL estimator for the GLR model with AR(1) structure is given by Zubari and Adenomon [22] as

β̂KLAR1
= (X ′V −1X + kIp)

−1(X ′V −1X − kIp)X
′V −1y, k > 0

This is a biased estimator also, and the expected value and the variance-covariance matrix as follows:

bias(β̂KLAR1
, β) = −2k(X ′V −1X + kIp)

−1β

and

cov(β̂KLAR1
, β) = σ2

(
X ′V −1X + kIp

)−1 (
X ′V −1X − kIp

) (
X ′V −1X

)−1 (
X ′V −1X − kIp

) (
X ′V −1X + kIp

)−1

In the paper, KL is presented as an estimator for the second-order autoregressive model as

β̂KLAR2
= (X ′P ′PX + kIp)

−1(X ′P ′PX − kIp)X
′P ′Py, k > 0
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Unlike β̂KLAR1
based on the P matrix given in Equaiton 4, β̂KLAR2

based on the P matrix is in
the form of the matrix given Equation 6. It is to be noted that, the estimator denoted by KL in
applications is β̂KLAR2

.
In the paper, the performance of the KL estimator for the P matrix given by Equation 6 is

compared with the performance of the alternative estimators. MSE criterion was used to compare
the performance. As a result, the following section explains how to calculate the MSE matrix of any
estimators.

3.MSE Criterion to Determine the Best Model

MSE of an estimator measures the average of the squares of the errors that is, the average squared
difference between the estimated and actual values. MSE is a risk function that represents expected
value of squared error loss. MSE is defined for β̃ being any estimator as

MSE(β̃, β) = cov(β̃) + bias(β̃)bias(β̃)′

It should be noted that if β̃ is unbiased, the MSE will be equal to the variance-covariance matrix of
β̃. The scalar mean square error (sMSE) value is equal to the sum of the diagonal elements of the
MSE matrix, namely its trace. Let the two estimator be β̃1 and β̃2. For β̃2 to be superior than β̃1
according to the sMSE criterion, the necessary and sufficient condition is

△
(
β̃1, β̃2

)
= trace(MSE(β̃1, β))− trace(MSE(β̃2, β)) > 0

In other words, it defines that the estimator with the smaller sMSE value performs better according to
this criterion. The statistical literature has extensively researched the comparison of biased estimators
to unbiased estimators using the sMSE criterion for both linear regression and GLR models with AR(1)
errors (see, [16,22,23]). In the following section, the biasing parameters (k/d) of the biased estimators
were coded to minimize the sMSE in each cycle while evaluating the estimators’ performance using
the sMSE criterion.

4.Monte Carlo Simulation Study

The Monte Carlo simulation is created based on a number of criteria, which are listed in Table 1.

Table 1. Assumed values of various components for Monte Carlo simulation

Factor Notation Values

Sample Size n 30, 100
Number of the independent variable p 3
Degree of multicollinearity γ2 0.70, 0.80, 0.90
Dispersion parameters σ 0.1, 0.5, 1
Number of replicates MCN 1000

Settings: The goal of Monte Carlo simulation research evaluated by Matlab is to examine the GLR
model with AR(2) errors fitted by the GLS, RR, Liu, and KL estimators. The sMSE criterion was
used to assess the estimators’ performance. The correlated regressor variables were generated from
McDonald and Galarneau [24] as

xij =
(
1− γ2

)1/2
zij + γzip, j = 1, 2, ..., p, i = 1, 2, ..., n (7)

where zij are independent standard normal pseudo-random numbers. γ is specified so that the corre-
lation between any two explanatory variables is given by γ2 [25]. The regressor matrix are centralized
and standardized after xij was produced, so that the X ′X becomes the correlation form. The final
regressor matrix is written as Z = (ones(n, 1) X) to correspond to the constant parameter. β, p+ 1
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vector was written with eigenvectors corresponding to the largest value of (X ′X) except the constant
parameter which is taken as 0.5.

The simulation loop started with the derivation of the ui error terms from standard normal dis-
tribution. Then, the error terms, εi, are generated from Equation 5. Here, to satisfy the stationarity
condition different ϕ1 and ϕ2 values are as in Table 2.

Table 2. Researcher’s parameters for the AR(2) model

ϕ1

ϕ2 = −0.9 -1.5 -0.5 0.5 1.5
ϕ2 = −0.7 -1.5 -0.5 0.5 1.5
ϕ2 = 0.7 -0.2 -0.1 0.1 0.2
ϕ2 = 0.9 -0.05 -0.025 0.025 0.05

Finally, observation of the response variable is generated from

yi = β0 +

p∑
j=1

βjxij + εi

P matrix in AR(2) structure (Equation 6) was created for different ϕ1 and ϕ2 values, and transformed
response vector and regressor matrix were obtained. While obtaining the biased estimators, k/d values
that minimize the related sMSE were obtained with a Matlab code and assigned as optimum k/d.
The experiments were replicated 1000 times and the sMSE of the estimators was calculated for each
replicate using the following Equation:

sMSE(β̃, β) =
1

MCN

MCN∑
r=1

(
β̃r − β

)′ (
β̃r − β

)
where β̃ is any of the earlier estimators. The estimators with the lowest sMSE has been regarded the
best. The simulation results are presented in Tables 3–18.

Table 3. ϕ1 = −1.5 and ϕ2 = −0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0140 0.0126 0.0131 0.0126 0.0120 0.0109 0.0112 0.0109
0.5 0.3491 0.2159 0.2109 0.2397 0.2996 0.1876 0.1868 0.2046
1 1.3964 0.7919 0.7759 0.9395 1.1984 0.7004 0.6987 0.7984

0.8 0.1 0.0188 0.0151 0.0162 0.0149 0.0161 0.0130 0.0137 0.0130
0.5 0.4702 0.2633 0.2524 0.3107 0.4020 0.2273 0.2261 0.2651
1 1,8809 0.9991 0.9592 1.2607 1.6082 0.8724 0.8687 1.0785

0.9 0.1 0.0340 0.0219 0.0233 0.0228 0.0292 0.0187 0.0207 0.0195
0.5 0.8502 0.4557 0.4236 0.5603 0.7312 0.3918 0.3892 0.4895
1 3,4009 1.7908 1.6631 2.2566 2.9249 1.5447 1.5326 1.9698
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Table 4. ϕ1 = −0.5 and ϕ2 = −0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0259 0.0214 0.0233 0.0210 0.0220 0.0193 0.0203 0.0191
0.5 0.6471 0.3911 0.3662 0.4566 0.5498 0.3357 0.3355 0.3739
1 2.5884 1.4329 1.3368 1.8662 2.1992 1.2093 1.2053 1.4852

0.8 0.1 0.0353 0.0252 0.0287 0.0250 0.0294 0.0225 0.0248 0.0222
0.5 0.8820 0.5178 0.4709 0.6310 0.7360 0.4239 0.4227 0.4927
1 3.5280 1.9790 1.7800 2.5801 2.9439 1.5975 1.5916 1.9872

0.9 0.1 0.0647 0.0393 0.0426 0.0439 0.0535 0.0329 0.0380 0.0348
0.5 1.6176 0.9747 0.8604 1.1614 1.3385 0.7777 0.7792 0.8979
1 6.4703 3.8719 3.3753 4.6652 5.3542 3.0742 3.0668 3.5956

Table 5. ϕ1 = 0.5 and ϕ2 = −0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0195 0.0171 0.0181 0.0170 0.0198 0.0184 0.0189 0.0184
0.5 0.4880 0.2988 0.2892 0.3301 0.4945 0.3236 0.3250 0.3497
1 1.9520 1.0851 1.0491 1.3234 1.9780 1.1201 1.1184 1.3304

0.8 0.1 0.0264 0.0199 0.0222 0.0195 0.0260 0.0216 0.0233 0.0213
0.5 0.6588 0.3777 0.3572 0.4426 0.6502 0.3845 0.3853 0.4273
1 2.6354 1.4311 1.3508 1.7991 2.6010 1.4201 1.4155 1.7331

0.9 0.1 0.0481 0.0296 0.0326 0.0313 0.0467 0.0302 0.0349 0.0303
0.5 1.2024 0.6965 0.6383 0.8264 1.1685 0.6752 0.6772 0.7756
1 4.8098 2.7518 2.5044 3.3293 4.6739 2.6510 2.6356 3.1279

Table 6. ϕ1 = 1.5 and ϕ2 = −0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0115 0.0111 0.0112 0.0111 0.0106 0.0102 0.0103 0.0102

0.5 0.2871 0.2029 0.2038 0.2051 0.2643 0.1925 0.1923 0.1991
1 1.1483 0.7347 0.7359 0.7460 1.0573 0.6928 0.6925 0.7308

0.8 0.1 0.0146 0.0133 0.0137 0.0133 0.0137 0.0123 0.0127 0.0122
0.5 0.3653 0.2302 0.2278 0.2420 0.3416 0.2163 0.2161 0.2304
1 1.4613 0.8565 0.8486 0.9618 1.3664 0.8095 0.8090 0.9091

0.9 0.1 0.0247 0.0184 0.0201 0.0180 0.0240 0.0171 0.0186 0.0168
0.5 0.6182 0.3449 0.3277 0.4127 0.6000 0.3297 0.3294 0.3957
1 2.4729 1.3291 1.2673 1.6831 2.3998 1.2815 1.2787 1.6109

Table 7. ϕ1 = −1.5 and ϕ2 = −0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0152 0.0138 0.0142 0.0137 0.0130 0.0117 0.0120 0.0117

0.5 0.3801 0.2320 0.2267 0.2559 0.3246 0.2007 0.2000 0.2206
1 1.5202 0.8480 0.8284 0.9912 1.2983 0.7471 0.7461 0.8672

0.8 0.1 0.0205 0.0163 0.0175 0.0160 0.0174 0.0140 0.0148 0.0139
0.5 0.5116 0.2828 0.2707 0.3291 0.4359 0.2443 0.2438 0.286
1 2.0462 1.0732 1.0248 1.3316 1.7434 0.9361 0.9336 1.1744

0.9 0.1 0.0370 0.0233 0.0251 0.0241 0.0317 0.0201 0.0222 0.0210
0.5 0.9246 0.4940 0.4535 0.5954 0.7933 0.4263 0.4231 0.5261
1 3.6986 1.9345 1.7780 2.4064 3.1731 1.6759 1.6630 2.1160
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Table 8. ϕ1 = −0.5 and ϕ2 = −0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0309 0.0251 0.0276 0.0247 0.0260 0.0224 0.0238 0.0222

0.5 0.7713 0.4623 0.4308 0.5341 0.6510 0.3927 0.3940 0.4406
1 3.0850 1.6880 1.5651 2.1917 2.6041 1.4154 1.4111 1.7402

0.8 0.1 0.0420 0.0295 0.0339 0.0294 0.0349 0.0260 0.0291 0.0257
0.5 1.0503 0.6114 0.5601 0.7357 0.8723 0.5002 0.5044 0.5738
1 4.2012 2.3400 2.1313 2.9897 3.4892 1.9013 1.9038 2.3344

0.9 0.1 0.0770 0.0462 0.0507 0.0516 0.0635 0.0383 0.0449 0.0406
0.5 1.9244 1.1569 1.0462 1.3541 1.5878 0.9298 0.9390 1.0531
1 7.6976 4.5945 4.1141 5.4314 6.3511 3.6694 3.6843 4.2093

Table 9. ϕ1 = 0.5 and ϕ2 = −0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0231 0.0212 0.0217 0.0197 0.0233 0.0215 0.0221 0.0214

0.5 0.5769 0.3482 0.3353 0.3909 0.5835 0.3778 0.3796 0.4082
1 2.3077 1.2645 1.2091 1.5874 2.3339 1.3017 1.2964 1.5537

0.8 0.1 0.0311 0.0231 0.0261 0.0227 0.0307 0.0250 0.0273 0.0247
0.5 0.7779 0.4447 0.4179 0.5260 0.7670 0.4513 0.4546 0.4988
1 3.1117 1.6864 1.5731 2.1493 3.0681 1.6690 1.6616 2.0148

0.9 0.1 0.0567 0.0344 0.0385 0.0368 0.0551 0.0349 0.0412 0.0352
0.5 1.4180 0.8198 0.7542 0.9683 1.3780 0.7984 0.8004 0.8964
1 5.6719 3.2416 2.9440 3.9004 5.5122 3.1417 3.1128 3.6184

Table 10. ϕ1 = 1.5 and ϕ2 = −0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0182 0.0177 0.0177 0.0177 0.0133 0.0129 0.0130 0.0129

0.5 0.4551 0.2951 0.2959 0.2992 0.3318 0.2428 0.2424 0.2465
1 1.8204 0.9413 0.9421 0.8856 1.3272 0.8491 0.8488 0.8637

0.8 0.1 0.0217 0.0207 0.0208 0.0207 0.0167 0.0154 0.0158 0.0154
0.5 0.5415 0.3250 0.3230 0.3350 0.4163 0.2688 0.2683 0.2794
1 2.1658 1.0766 1.0703 1.0996 1.6654 0.9768 0.9760 1.0813

0.9 0.1 0.0328 0.0287 0.0297 0.0286 0.0279 0.0213 0.0233 0.0208
0.5 0.8205 0.4528 0.4356 0.4988 0.6985 0.3945 0.3937 0.4582
1 3.2821 1.6075 1.5529 1.9361 2.7938 1.5073 1.4994 1.8897

Table 11. ϕ1 = −0.2 and ϕ2 = 0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0310 0.0267 0.0286 0.0264 0.0271 0.0230 0.0247 0.0228

0.5 0.7756 0.4712 0.4560 0.5107 0.6767 0.3977 0.3980 0.4365
1 3.1024 1.6768 1.6115 2.0099 2.7069 1.4271 1.4161 1.7668

0.8 0.1 0.0411 0.0304 0.0351 0.0297 0.0363 0.0266 0.0303 0.0259
0.5 1.0268 0.5891 0.5642 0.6590 0.9085 0.5041 0.5026 0.5785
1 4.1071 2.2158 2.0976 2.6590 3.6341 1.8971 1.8795 2.3674

0.9 0.1 0.0732 0.0438 0.0510 0.0457 0.0662 0.0388 0.0462 0.0404
0.5 1.8299 1.0488 0.9871 1.1816 1.6554 0.9320 0.9295 1.0625
1 7.3198 4.1652 3.8566 4.7536 6.6215 3.6887 3.6340 4.2780
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Table 12. ϕ1 = −0.1 and ϕ2 = 0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0319 0.0275 0.0294 0.0272 0.0277 0.0236 0.0253 0.0233

0.5 0.7963 0.4822 0.4662 0.5218 0.6920 0.4086 0.4086 0.4462
1 3.1853 1.7140 1.6449 2.0708 2.7681 1.4620 1.4513 1.8034

0.8 0.1 0.0420 0.0312 0.0360 0.0305 0.0371 0.0272 0.0310 0.0265
0.5 1.0493 0.6012 0.5751 0.6694 0.9270 0.5159 0.5149 0.5892
1 4.1972 2.2545 2.1260 2.7192 3.7082 1.9426 1.9210 2.4076

0.9 0.1 0.0743 0.0445 0.0522 0.0461 0.0674 0.0395 0.0472 0.0411
0.5 1.8587 1.0573 0.9970 1.1904 1.6847 0.9498 0.9503 1.0806
1 7.4347 4.1782 3.8952 4.7788 6.7387 3.7547 3.7086 4.3385

Table 13. ϕ1 = 0.1 and ϕ2 = 0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0349 0.0311 0.0327 0.0308 0.0291 0.0253 0.0270 0.0251

0.5 0.8716 0.5280 0.5127 0.5560 0.7266 0.4400 0.4413 0.4729
1 3.4863 1.8165 1.7594 2.1701 2.9064 1.5566 1.5468 1.8884

0.8 0.1 0.0447 0.0352 0.0397 0.0344 0.0384 0.0292 0.0330 0.0285
0.5 1.1172 0.6421 0.6175 0.7051 0.9591 0.5453 0.5448 0.6131
1 4.4690 2.3426 2.2322 2.8535 3.8364 2.0303 2.0074 2.5107

0.9 0.1 0.0762 0.0482 0.0579 0.0483 0.0684 0.0412 0.0496 0.0421
0.5 1.9043 1.0851 1.0274 1.2153 1.7096 0.9745 0.9697 1.0970
1 7.6173 4.2361 3.9368 4.9036 6.8382 3.8348 3.7678 4.4176

Table 14. ϕ1 = 0.2 and ϕ2 = 0.7

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL
0.7 0.1 0.0442 0.0410 0.0415 0.0410 0.0338 0.0311 0.0320 0.0310

0.5 1.1049 0.5997 0.5909 0.6022 0.8459 0.5101 0.5129 0.5266
1 4.4196 1.8850 1.8579 2.0457 3.3836 1.6864 1.6855 1.9705

0.8 0.1 0.0537 0.0471 0.0488 0.0470 0.0429 0.0361 0.0389 0.0357
0.5 1.3422 0.7100 0.6935 0.7411 1.0728 0.6112 0.6117 0.6593
1 5.3687 2.4044 2.3366 2.7871 4.2911 2.1509 2.1412 2.6487

0.9 0.1 0.0841 0.0609 0.0694 0.0598 0.0722 0.0487 0.0576 0.0478
0.5 2.1027 1.1489 1.0904 1.2812 1.8057 1.0297 1.0205 1.1541
1 8.4106 4.3172 4.0660 5.1806 7.2230 3.9461 3.8599 4.6895

Table 15. ϕ1 = −0.05 and ϕ2 = 0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0330 0.0304 0.0313 0.0303 0.0260 0.0235 0.0245 0.0234
0.5 0.8261 0.5022 0.4890 0.5213 0.6497 0.4019 0.4017 0.4241
1 3.3045 1.6754 1.6277 1.9559 2.5988 1.3984 1.3896 1.6646

0.8 0.1 0.0415 0.0350 0.0377 0.0345 0.0338 0.0273 0.0300 0.0268
0.5 1.0366 0.6018 0.5754 0.6566 0.8442 0.4842 0.4822 0.5358
1 4.1463 2.1392 2.0268 2.6397 3.3770 1.7717 1.7522 2.2067

0.9 0.1 0.0684 0.0467 0.0550 0.0464 0.0589 0.0376 0.0446 0.0374
0.5 1.7101 0.9963 0.9222 1.1392 1.4713 0.8328 0.8247 0.9517
1 6.8402 3.8390 3.5146 4.6251 5.8853 3.2379 3.1698 3.8635
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Table 16. ϕ1 = −0.025 and ϕ2 = 0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0355 0.0329 0.0336 0.0329 0.0274 0.0251 0.0259 0.0250
0.5 0.8879 0.5235 0.5106 0.5358 0.6840 0.4228 0.4227 0.4408
1 3.5516 1.6999 1.6638 1.9319 2.7360 1.4414 1.4327 1.6956

0.8 0.1 0.0439 0.0381 0.0401 0.0378 0.0351 0.0292 0.0317 0.0288
0.5 1.0981 0.6226 0.5970 0.6688 0.8786 0.5055 0.5031 0.5550
1 4.3923 2.1631 2.0683 2.6248 3.5143 1.8160 1.7963 2.2567

0.9 0.1 0.0708 0.0500 0.0582 0.0494 0.0602 0.0398 0.0470 0.0393
0.5 1.7707 1.0146 0.9442 1.1570 1.5059 0.8554 0.8473 0.9726
1 7.0828 3.8656 3.5559 4.6987 6.0235 3.2971 3.2222 3.9631

Table 17. ϕ1 = 0.025 and ϕ2 = 0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0465 0.0434 0.0434 0.0434 0.0342 0.0323 0.0325 0.0323
0.5 1.1615 0.5842 0.5798 0.5880 0.8552 0.4928 0.4936 0.5006
1 4.6460 1.7447 1.7333 1.8234 3.4207 1.5365 1.5339 1.6602

0.8 0.1 0.0548 0.0496 0.0500 0.0496 0.0420 0.0378 0.0387 0.0377
0.5 1.3707 0.6813 0.6675 0.6998 1.0494 0.5756 0.5738 0.6050
1 5.4826 2.2050 2.1585 2.4485 4.1978 1.9141 1.9034 2.2605

0.9 0.1 0.0816 0.0642 0.0689 0.0635 0.0670 0.0505 0.0562 0.0496
0.5 2.0400 1.0730 1.0199 1.1810 1.6759 0.9264 0.9178 1.0350
1 8.1600 3.9407 3.7190 4.6695 6.7035 3.4248 3.3496 4.1995

Table 18. ϕ1 = 0.05 and ϕ2 = 0.9

γ2 σu n=30 n=100

GLS RR Liu KL GLS RR Liu KL

0.7 0.1 0.0614 0.0563 0.0559 0.0562 0.0450 0.0425 0.0422 0.0424
0.5 1.5357 0.6245 0.6305 0.6443 1.1259 0.5490 0.5506 0.5627
1 6.1430 1.7610 1.7634 1.8079 4.5035 1.5716 1.5726 1.5983

0.8 0.1 0.0698 0.0629 0.0621 0.0630 0.0528 0.0487 0.0483 0.0487
0.5 1.7442 0.7223 0.7243 0.7356 1.3198 0.6320 0.6333 0.6484
1 6.9766 2.2167 2.2118 2.2865 5.2792 1.9508 1.9495 2.1034

0.9 0.1 0.0964 0.0800 0.0807 0.0801 0.0778 0.0641 0.0663 0.0639
0.5 2.4110 1.1103 1.0854 1.1626 1.9451 0.9835 0.9814 1.0535
1 9.6441 3.9398 3.8119 4.3284 7.7806 3.4693 3.4315 4.0780

The simulation tables clearly showed that sMSE value of the RR, Liu, and KL estimators increased
as the strength of multicollinearity (γ2). However, if we compare the biased estimators with the GLS,
it is clearly seen that the estimators biased to the strength of the multicollinearity are more robust.
In comparison to RR and Liu, the sMSE value of the KL estimator grew as the γ2 increased. When
σu = 0.1, the KL estimator gave much smaller sMSE values than the GLS, while giving very close
sMSE values with the RR and Liu biased estimators. However, for σu = 1, the sMSE values of the
KL estimator were always smaller than the GLS but gave higher sMSE values compared to RR and
Liu. As n increased, sMSE value of the KL estimator decreased. It should be noted, however, that all
of these results were interpreted using the stationary AR(2) model. When ϕ2 constant, the absolute
of the ϕ1 declined in the AR(2) model, sMSE values of the KL estimator and others increased.
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5.Application to Real Data

Two real datasets are analyzed to illustrate the sMSE performance of the KL estimator under the
GLR model with AR(2) error structure. While performing the analyzes for both datasets, the multi-
collinearity problem was determined and in the linear regression model, parameter estimation values
of OLS, ridge, liu, and kl estimators, sMSE values, k/d values that minimize sMSE for biased esti-
mators, and CPU time is given in seconds. Then, the autocorrelation problem in the datasets was
investigated and after the error structures were determined, the similar outputs of GLS, RR, Liu, and
KL estimators in the GLR models were given. The examined datasets are available on request from
the corresponding author.

5.1. French Economy Data

The French economy data, used by Malinvard [26], consists of one response variable and three regressor
variables. The response variable y is imports, x1 is domestic production, x2 is stock formation and
x3 is domestic consumption. All variables cover 1946 to 1845 and are measurements per milliards in
French frags. The multiple linear regression model to be estimated as

y = β0 + β1x1 + β2x2 + β3x3 + ε (8)

The dataset is used by previous authors to evaluate the performance of the KL estimator under the
linear model (see, [9, 27]). Figure 1 depicts the linear correlation (r) between the three regressions,

Fig. 1. Correlations between the regressors for French economy data.

as well as their significance at the 0.05 significance level (p). As can be observed, the correlation
between the first and third variables is nearly one. In addition, when the condition number is ex-
amined, the eigenvalues of the X ′X matrix are calculated as 0.2982, 49.6458, 157.9069, 1617795.3772
and κ = 2329.4065. A strong multicollinearity problem has been detected using these two collinearity
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diagnostics approaches. As a result, biased estimators were used to estimate the parameters in Equa-
tion 1. In the linear regression model with multicollinearity problem, parameter estimates and sMSE
values of OLS and alternative biased estimators, and biasing parameters minimizing sMSE for biased
estimators are given in Table 19. Also, the times during the minimization of the sMSE values with
respect to k/d are given as CPU time.

Table 19. Estimation of model coefficients and sMSE values when autocorrelation is neglected for
French economy data

Coeff. OLS ridge liu kl

β̂0 -19.7251 -18.8982 -18.8957 -18.8994

β̂1 0.03220 0.0628 0.0627 0.0628

β̂2 0.4142 0.4008 0.4005 0.4008

β̂3 0.2427 0.1947 0.1949 0.1948

sMSE 17.2379 16.515619 16.5154 16.515628

k/d - 0.0131 0.9452 0.0064

CPU time - 0.2500 0.3750 0.2656

Table 19 shows that even though the liu estimator fitted to the linear model has the smallest sMSE
value, the ridge, liu, and kl estimators are relatively similar in terms of sMSE performance.
Since Kibria and Lukman [9] conducted the paper in a linear regression model, the autocorrelation
problem was not included French economy data. However, it has an autocorrelation problem. Auto-
correlation function (ACF) and partial autocorrelation function (PACF) are used to determine this
status and error structure decision based on ACF and PACF graphs as follows:
Except for the first lag, the other lags fluctuate within the confidence bounds, as shown in the ACF
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Fig. 2. Correlagram for French economy data

graph of Fig. 2. However, after two lags, the reduction in the PACF graph was abruptly stopped off
(Fig. 2). The parameters of the AR(2) model were found to be significant as shown in Table 20.

It can be specify the lag structure, presence of a constant, and innovation distribution of an
AR(p) model for this dataset by following Table 20. As shown in Table 20 the constant coefficient
can be accepted as statistically zero. Thus, the model to be fit in the AR structure is compatible
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Table 20. Choosing appropriate lag in the AR Model for French economy data

p T statistic P Value

Constant 0.6539 0.5132

AR(1) 6.6345 3.2557e-11

AR(2) -3.5830 0.0003

with Equation 5. The model parameters were estimated in the following order; ϕ̂1 = 0.7037 and
ϕ̂2 = 0.0028.

After the P matrix based on the estimations of the ϕ̂1 and ϕ̂2 parameters, the response variable
and regressor matrix were transformed. The multicollinearity problem still existed in the transformed
model (κ = 1271.7991). Therefore, biased estimators were applied to estimate the regression param-
eters under the GLR model with AR(2) errors. The GLS, RR, Liu, and KL estimators were used to
estimate the parameter estimates in the transformed model, and the sMSE values of the estimators
are listed in Table 21.

Table 21. The parameter estimations and sMSE values in GLR models with AR(2) error structure
for French economy data

General Linear (AR(2)) GLS RR Liu KL

Constant -21.8389 -21.2531 -21.2582 -21.2452

β1 -0.0137 -0.0024 -0.0027 -0.0022

β2 0.4840 0.4805 0.4805 0.4805

β3 0.3234 0.3040 0.3045 0.3038

sMSE 13.0806 12.7340 12.7339 12.7342

opt.k/d - 0.0032 0.9703 0.0016

CPU time - 0.2031 0.5781 0.2812

Table 21 clearly demonstrates that the KL estimator provides an sMSE value that is similar to the
well-known RR and Liu estimators when the error structure is AR(2) process. It was also observed
that the three-biased estimator had better performance than the unbiased GLS according to the sMSE
criterion. Tables 19 and 21 are comparable; if the autocorrelation problem is ignored and a linear
regression model is fitted, the sMSE value will differ due to differences in the model parameters.

5.2.Weather Data

Weather data received at the station in the Columbia-Pacific Northwest Region for each 15-minute
time period on January 1, 2022, was used (https://www.usbr.gov/pn/agrimet/webagdayread.html).
Multiple linear regression model to be estimated as

y = β0 + β1x1 + β2x2 + β3x3 + ε (8)

where y is wind speed, x1 is humidity, x2 is vapor pressure x3 is dew point temperature.
Examining the correlation matrix graph shown in Figure 3, it can be clearly seen that there is

a strong correlation between the vapor pressure and the dew point temperature (r = 0.9359 and
p = 1.0393e− 44).

The fact that this correlation coefficient is very close to 1 indicates a multicollinearity problem in
the dataset. In addition, the condition number was calculated. The eigenvalues of the X ′X matrix are
0.0092, 0.9884, 1258.8777 and 66381.7020, respectively, and the condition number is κ = 8522.8934.
Both the correlation coefficient and the condition number indicated strong multicollinearity. There-
fore, while estimating the regression parameters in the linear regression model given by Equation 1,
biased estimators were used as alternatives to OLS, and the optimal k/d values that minimize sMSE
values were presented in Table 22. Table 22 shows when fitting the weather data with multicollinear-
ity problem with the linear regression model, biased estimators significantly reduce the sMSE value
compared to OLS. In addition, when the CPU times spent in the minimization process of optimal
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Fig. 3. Correlations between the regressors for weather data

Table 22. Estimation of model coefficients and sMSE values when autocorrelation is neglected for
weather data

Coeff. OLS ridge liu kl

β̂0 0.2118 0.3051 0.4471 0.8787

β̂1 0.01374 0.0214 0.0192 0.0140

β̂2 4.9497 0.0683 0.3735 0.4386

β̂3 -0.0429 0.0002 -0.0041 -0.0097

sMSE 349.2349 24.1939 23.2219 25.2441

k/d - 2.0243 0.0536 0.0081

CPU time - 0.2368 0.2656 0.2543

biasing parameters according to sMSE are examined, it is seen that the algorithms are completed in
close seconds. The existence of the autocorrelation problem was investigated after the multicollinear-
ity problem in the weather data was discovered. The ACF and PACF graphs in Figure 4 and the
hypothesis tests in Table 23 were used to represent these investigations.

Figure 4 clearly illustrated the properties of ACF/PACF of an AR(2) process: Its ACF decreased
sharply and PACF was be nearly zero after lag 2.

Table 23. Choosing appropriate lag in the AR Model for weather data

p T statistic P Value

Constant 0.6669 0.5700

AR(1) 4.2189 2.4541e-05

AR(2) 2.1966 0.0280

Table 23 showed that the two delayed functional associations of errors were statistically significant.
In this case, ϕ̂1 and ϕ̂2 parameters in Equation 5 were estimated as 0.3999 and 0.2561, respectively, in
the weather dataset which has autocorrelation problem. After it was determined that the functional
associations between the errors were modeled with the AR(2) process, the GLR model was fitted by
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Fig. 4. Correlagram for weather data

the unbiased GLS and the biased RR, Liu, and KL estimators. Estimation of regression parameters,
sMSE values, optimal k/d biasing parameters minimizing sMSE, and minimization time as CPU were
shown in Table 24.

Table 24. The parameter estimations and sMSE values in GLR models with AR(2) error structure
for weather data

General Linear (AR(2)) GLS RR Liu KL

Constant -2.1272 -0.5364 -0.4215 -1.5792

β1 0.04597 0.0326 0.0310 0.0450

β2 2.9477 -0.0117 0.1115 -0.0690

β3 -0.0417 -0.0334 -0.0353 -0.0239

sMSE 197.278 12.1687 11.9377 16.8049

opt.k/d - 0.5581 0.0420 0.0100

CPU time - 0.2012 0.2869 0.2831

It can be obviously seen in Table 24 that applying biased estimators in the weather data with
multicollinearity and AR(2) autocorrelation problem significantly reduced the sMSE value compared
to the unbiased GLS. The fact that the model variance is higher in the weather data compared to
the French economy data supports a situation that is visible in the simulation results: In the French
economy data with a small model variance, the sMSE value of the KL estimator was very close to
the sMSE values of the RR and Liu estimators, but in the weather data with high model variance,
the sMSE value of the KL estimator was slightly higher than the sMSE values of the RR and Liu
estimators.

6. Conclusion

The simulation results demonstrated that as the variance of the model increases, the sMSE values
of the KL estimator and the others increases. Moreover, the sMSE values of the KL estimator and
others appear to increase as the severity of multicollinearity increases. When the model variance
is small, sMSE values of the KL estimator under the AR(2) error structure are closely similar to
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the popular biased estimators’ values. The sMSE values of the KL estimator and others decreased
when the sample size was increased. Examples of two data sets with autocorrelation problems from
both multicollinearity and AR(2) processes are also included in the paper. The results of the two
different data sets were generally frugal and the findings support the simulation results. Furthermore,
CPU times were discovered to be near to each other while determining the optimal biasing parameter
over real datasets. In other words, the Kl estimator was close to the popular estimators in terms
of CPU time. It was discovered that KL performed substantially better than GLS with optimum
biasing parameters, and its results were extremely near to those of Ridge and Liu estimators. In the
statistical literature, new unbiased and biased estimators continue to be proposed. As new estimators
are proposed, it is critical to examine the assumptions and to make parameter estimations on the
correct model for statistical inference.

Author Contributions

The author read and approved the last version of the paper.

Conflicts of Interest

The author declares no conflict of interest.

References

[1] D. A. Belsley, E. Kuh, R. E. Welsch, Regression Diagnostics: Identifying Influential Data and
Sources of Collinearity, John Wiley & Sons, New Jersey, 2005.

[2] A. E. Hoerl, R. W. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems,
Technometrics 12 (1) (1970) 55–67.

[3] A. E. Hoerl, R. W. Kannard, K. F. Baldwin, Ridge Regression: Some Simulations, Communica-
tions in Statistics - Theory and Methods 4 (2) (1975) 105–123.

[4] L. JF, A Simulation Study of Ridge and Other Regression Estimators, Communications in Statis-
tics - Theory and Methods 5 (4) (1976) 307–323.

[5] K. Liu, Using Liu-Type Estimator to Combat Collinearity , Communications in Statistics - Theory
and Methods 32 (5) (2003) 1009–1020.

[6] K. Liu, A New Class of Blased Estimate in Linear Regression, Communications in Statistics -
Theory and Methods 22 (2) (1993) 393–402.
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