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Abstract. The purpose of the present paper is to examine the zeros of R-

Bonacci polynomials and their derivatives. We obtain new characterizations
for the zeros of these polynomials. Our results generalize the ones obtained

for the special case r = 2. Furthermore, we find explicit formulas of the roots
of derivatives of R-Bonacci polynomials in some special cases. Our formulas

are substantially simple and useful.

1. Introduction

The problem finding a convenient method to determine the zeros of a polynomial
has a long history that dates back to the work of Cauchy [14]. Zeros of polynomials,
which can be real or complex conjugate, have been perhaps among the most popular
topics of study for centuries. When the historical development of polynomial studies
have been examined, in 2000 BC, the ancient Babylon Tribe living in Mesopotamia
stands out. This tribe knowing how to calculate positive roots is perhaps the best
example. Some recent applications of the theory of polynomials with symmetric
zeros can be found in [21]. This is a short review on the polynomials whose zeros
are symmetric either to the real line or to the unit circle. These kind polynomials
are very important in mathematics and physics (for more details see [21] and the
references therein). On the other hand, the open problem of determining the exact
number of zeros of a given polynomial on the unit circle was studied in [22]. Several
classes of polynomials with symmetric zeros are also discussed in detail.
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Fibonacci polynomials, a broad class of polynomials, were first described by Bel-
gian mathematician Eugene Charles Catalan (1814-1894), German mathematician
E. Jacobsthal and Lucas polynomials in 1970 by M. Bicknell. The starting point of
this polynomial class is based on well-known Golden Ratio and Fibonacci numbers,
which are still of great interest in the world of modern applied sciences and whose
new applications are still found (see, for instance, [1]- [16] and [18]- [20]). For any
positive real number x, the Fibonacci polynomials are defined by

Fn+2 (x) = xFn+1 (x) + Fn (x) ,

with initial values F0(x) = 0, F1(x) = 1. In [10], V. E. Hoggat and M. Bicknell
are found explicitly the zeros of these polynomials using hyperbolic trigonometric
functions. The symmetric polynomials of the zeros of Fibonacci polynomials were
found by M. X. He, D. Simon and P. E. Ricci in [7]. Furthermore, in [8], the
location and distribution of the zeros of the Fibonacci polynomials were determined.
Fibonacci polynomials and their different properties have been examined (see, for
example, [3], [24], [25], and the references therein).

In this paper our aim is to examine the zeros of R-Bonacci polynomials and their
derivatives. R-Bonacci polynomials Rn(x) are defined by the following recursive
equation in [9] for any integer n and r ≥ 2 :

Rn+r(x) = xr−1Rn+r−1 (x) + xr−2Rn+r−2 (x) + · · ·+Rn (x) , (1)

with the initial values R−k(x) = 0, k = 0, 1, · · · , r − 2, R1(x) = 1. For r = 2, 3 in
the recurrence relation (1), R-Bonacci polynomials become the so called Fibonacci
and Tribonacci polynomials, respectively. Although, there are a large number of
publications regarding to Fibonacci polynomials and their generalizations (see [7]-
[9], [11] and [13]), the open expressions have not been found for the zeros of Tri-
bonacci polynomials and their derivatives yet. Instead, numerical studies have been
done more intensively in recent years. Zero attractors of these polynomials were
obtained by W. Goh, M. X. He and P. E. Ricci in [6]. In [15], the number of the real
roots of Tribonacci-coefficient polynomials were found. Recently, the smallest disc
or annulus containing the zeros of Tribonacci polynomials have been examined by
Ö. Öztunç Kaymak and an algorithm has given to use in other boundary problems
in [12].

In this study, in order to determine the distribution of the zeros of R-Bonacci
polynomials, we examine some properties of R-bonacci polynomials, a more gen-
eral class of Fibonacci and Tribonacci polynomials. In Section 2, we consider some
classes of R-Bonacci polynomials. We find the symmetric polynomials which are
made up of the rth order of the zeros of R-Bonacci polynomials. Using these sym-
metric polynomials, we determine the reference roots for the polynomials Rrn+p(x)
for p = 0, 1 and n = 1. So, we have generalized the results obtained for the special
case r = 2 in [10].

On the other hand, there are several papers on the derivatives of the Fibonacci
polynomials (see [4], [5], [17], [23] and the references therein). In Section 3, we
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study the roots of the derivatives of R-Bonacci polynomials. We obtain the most
general symmetric polynomials which are made up of the rth order of the zeros
of derivatives of R-Bonacci polynomials. Using these symmetric polynomials, we
find some formulas for the zeros of derivatives of R-Bonacci polynomials for some
special values of t.

2. Zeros of Some Classes of R-Bonacci Polynomials

The general representations for R-Bonacci polynomials was given in [9] as

Rn(x) =

[ (r−1)(n−1)
r ]∑

j=0

(
n− j − 1

j

)
r

x(r−1)(n−1)−rj . (2)

Here rn,j =
(
n
j

)
r
denotes the r-nomial coefficient and [.] denotes the greatest integer

function. In this section, we obtain the symmetric polynomials including the zeros
of R-Bonacci polynomials. Before finding symmetric polynomial of the zeros of
R-Bonacci polynomials, the following observation based on 2:

Observation 1. The zeros of Rn(x) and Rn(xe
2π
r i) are identical.

To see the above observation, the following result is obtained by writing xe
2π
r i

instead of x in 2:

Rn(xe
2π
r i) =

[ (r−1)(n−1)
r ]∑

j=0

rn,j

(
xe

2πi
r

)(r−1)(n−1)−rj

. (3)

Then, the desired result is easily seen by taking a parenthesis
(
e

2πi
r

)(r−1)(n−1)

and we have

Rn(xe
2π
r i) =

(
e

2πi
r

)(r−1)(n−1)
(
rn,0 x

(r−1)(n−1) + rn,1 x
(r−1)(n−1)−r

+ · · ·+ r
n,[ (r−1)(n−1)

r ] x

)

=
(
e

2πi
r

)(r−1)(n−1)

Rn(x).

By this observation, we can simply state that the zeros of R-Bonacci polynomials
can be created by rotating the angle of 2π

r degrees in the complex plane. The zeros

of Rn(x) are same as Rn(xe
2πi
r ), as they are with Rn(xe

− 2πi
r ). Thus, the zeros of

Rn(x) can be divided into r sets: {xi} ,
{
xie

2πi
r

}
, · · · ,

{
xie

2πi
r

}
. Here we refer to

this set {xi} as a set of reference zeros. The zeros of the 20th Tribonacci polynomial
are seen in Figure 1. Notice that the zeros of this polynomial can be generated at
an angle of 120 degrees with reference to the set {xi}.



ON THE ZEROS OF R-BONACCI POLYNOMIALS 981

{xi}

�xi �
2πi

3  xi ⅇ
-2πi
3 

-1.0 -0.5 0.0 0.5 1.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Figure 1. The zeros of T20 (x)

Our theorems are coincide with the ones obtained in [7] for R = 2, 3. Actually,
Theorem 1 and Theorem 2 are the most generalized versions of the results ob-
tained for Tribonacci and Fibonacci polynomials. For the definition of a symmetric
polynomial one can see [7].

Theorem 1. The most general form of the jthsymmetric polynomials consisting of
over the rth zeros of Rrn (x) is as follows:

σj

(
xr1, · · · , xr(r−1)n−1

)
=(−1)j

(
rn− j − 1

j

)
r

. (4)

Proof. It is known that the zeros of R-Bonacci polynomials lie in the argument 2π
r

and hence the polynomial Rrn (x) can be factorized as

Rrn (x)= x

(r−1)n−1∏
k=1

(x− xk)
(
x− xke

2πi
r

)
· · ·
(
x− xke

− 2πi
r

)
.

If we rearrange this equation, we obtain

Rrn (x) = x{xr
2n−rn−r −

xr
2n−rn−2r

(r−1)n−1∑
k=1

xrk + xr
2n−rn−3r

∑
j ̸=k

xrjx
r
k
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−xr
2n−rn−4r

∑
j ̸=k ̸=l

xrjx
r
kx

r
l + · · · −

(r−1)n−1∏
k=1

xrk}

=


(r−1)n−1∑

j=0

(−1)jx(r−1)(rn−1)−rj

 ∑
1=l1<l2<···<lj

j∏
i=1

xrli




=

(r−1)n−1∑
j=0

(−1)jσj

(
xr1, x

r
2, · · · , xr(r−1)n−1

)
x(r−1)(rn−1)−rj . (5)

On the other hand by (2) we can write

Rrn(x) =

(r−1)n−1∑
j=0

(
rn− j − 1

j

)
r

x(r−1)(rn−1)−rj . (6)

Since the equations (5) and (6) are equal, we obtain the desired result (4). □

Corollary 1. The following equations are satisfied by the zeros of Rrn (x) :

(r−1)n−1∑
k=1

xrk = −
(
rn− 2

1

)
r

. (7)

Proof. By setting j = 1 in the equation (4) desired result is obtained. □

Theorem 2. The most general form of the jth symmetric polynomials consisting
of the rth zeros of Rrn+1 (x) is as follows :

σj

(
xr1, · · · , xr(r−1)n

)
=(−1)j

(
rn− j

j

)
r

. (8)

Proof. By a similar way used in the proof of Theorem 1, we can write

Rrn+1 (x)=

(r−1)n∏
k=1

(x− xk)
(
x− xke

2πi
r

)
· · ·
(
x− xke

− 2πi
r

)
.

Then we get

Rrn+1 (x) = {xr
2n−rn −

xr
2n−rn−r

(r−1)n∑
k=1

xrk + xr
2n−rn−2r

∑
j ̸=k

xrjx
r
k

−xr
2n−rn−3r

∑
j ̸=k ̸=l

xrjx
r
kx

r
l + · · · −

(r−1)n∏
k=1

xrk}

=


(r−1)n∑
j=0

(−1)jxrn(r−1)−rj

 ∑
1=l1<l2<···<lj

j∏
i=1

xrli
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=

(r−1)n∑
j=0

(−1)j σj

(
xr1, x

r
2, · · · , xr(r−1)n

)
xrn(r−1)−rj . (9)

By putting rn+ 1 instead of n in (2), we find

Rrn+1 (x) =

n(r−1)∑
j=0

(
rn− j

j

)
r

x(r−1)rn−rj . (10)

It follows from the comparison (9) and (10), it is possible to write the desired
result (8). □

Corollary 2. The following equations are satisfied by the zeros of Rrn+1 (x) :

(r−1)n∑
k=1

xrk = −
(
rn− 1

1

)
r

. (11)

Proof. If we set j = 1 in the equation (8) then we get the equation (11). □

Now, using these symmetric polynomials, we obtain the reference roots ofRrn+p(x)
for p = 0, 1.

Theorem 3. For p = 0, 1 and n = 1, let xj(1 ≤ j ≤ r) be the reference zeros of
Rrn+p (x) . Then we have

xrj = −1. (12)

Proof. Let p = 0 or p = 1 and let the set of the reference zeros of Rrn+p (x) be
{x1, · · · , xr}. The other zeros of the polynomial Rrn+p (x) will be generated by the
argument 2π

r except the root x = 0. For a fixed j, using the equations (11) and (7),
we have

r−1∑
k=1

xrk = xr1 + xr2 + · · ·+ xrr−1

= xrj +
(
xje

2πi
r

)r
+
(
xje

4πi
r

)r
+ · · ·+

(
xje

2(r−2)πi
r

)r
= −(r − 1)

and
r−2∑
k=1

xrk = xr1 + xr2 + · · ·+ xrr−1

= xrj +
(
xj e

2πi
r

)r
+
(
xj e

4πi
r

)r
+ · · ·+

(
xje

2(r−3)πi
r

)r
= −(r − 2),

respectively. Rearranging the above equations, it can be easily seen that the refer-
ence roots of Rrn+p (x) as in the equation (12). □
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Figure 2. The zeros of B6 (x)

Example 1. Let us consider the following 5-Bonacci polynomial

B6 (x) = (x5 + 1)4.

Using (12), if we solve the equation x5j = −1(1 ≤ j ≤ 5), the reference roots of the
polynomial B6 (x) are found as follows (see Figure 2) :

x1 = (−1) , x2 = (−1)
1
5 , x3 = − (−1)

2
5 , x4 = (−1)

3
5 , x5 = − (−1)

4
5 .

3. Zeros of Derivatives of R-Bonacci Polynomials

Before we find the symmetric polynomials which are made up of the rth order of

the zeros of the derivatives of R-Bonacci polynomials R
(t)
n (x), we write the algebraic

representations of them. For any fixed n, using the equation (2), the algebraic

representation of the derivative polynomial R
(t)
n (x) is obtained as follows:

R(t)
n (x) =

[ (r−1)(n−1)
rt ]∑

j=0

(
n− j − 1

j

)
r

((r−1)(n−1)−rj)...((r−1)(n−1)−rj−t+1)x(r−1)(n−1)−rj−t.

(13)

Now, we determine the symmetric polynomials for R
(t)
rn+p(x) for special values

of t. We give the following theorem.

Theorem 4. Let k ∈ N+, p ∈ {0, 1, · · · , r − 1}. If we consider

t = rk − (1− p)(r − 1), (14)



ON THE ZEROS OF R-BONACCI POLYNOMIALS 985

µ = ((r − 1)(rn+ p− 1)) · · · (rn(r − 1)− t+ (p− 1)r + (2− p)) (15)

and

η = (r − 1)n−
(
t+ (1− p)(r − 1)

r

)
, (16)

then the most general form of the symmetric polynomials consisting of the zeros of

R
(t)
rn+p (x) is as follows:

σ
(
xr1, ..., x

r
η

)
= (17)

(−1)j((r − 1)(rn+ p− 1)− rj)...((r − 1)(rn+ p− 1)− rj − t+ 1)

µ

(
rn+ p− j − 1

j

)
r

.

Proof. It can be easily seen that

R
(t)
rn+p (x)=µ

η∏
k=1

(x− xk)
(
x− xke

2πi
r

)
· · ·
(
x− xke

− 2πi
r

)
,

where µ is a constant. Then we have

R
(t)
rn+p (x) = µ{xr

2n−rn−(t+(1−p)(r−1)) −

xr
2n−rn−(t+(1−p)(r−1))−r

η∑
k=1

xrk + xr
2n−rn−(t+(1−p)(r−1))−2r

∑
j ̸=k

xrj x
r
k

−xr
2n−rn−(t+(1−p)(r−1))−3r

∑
j ̸=k ̸=l

xrjx
r
kx

r
l + · · · −

η∏
k=1

xrk}

= µ


η∑

j=0

(−1)jxr
2n−rn−(t+(1−p)(r−1))−rj

 ∑
1=l1<l2<···<lj

j∏
i=1

xrli




= µ

η∑
j=0

(−1)jσj

(
xr1, x

r
2, · · · , xrη

)
x(r−1)(rn+p−1)−rj−t. (18)

By using the equation (13) and taking rn+ p instead of n we can write

R
(t)
rn+p(x) =

[ (r−1)(rn+p−1)
rt ]∑

j=0

(
rn+ p− j − 1

j

)
r

×

((r−1)(rn+p−1)−rj)...((r−1)(rn+p−1)−rj− t+1)x(r−1)(rn+p−1)−rj−t. (19)

Since the equations (18) and (19) are equal, then the proof follows. □

Corollary 3. Let t and η be as in the equations (14) and (16), respectively. For
k ∈ N+ and p ∈ {0, 1, · · · , r − 1}, the following equations are satisfied by the zeros
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of R
(t)
rn+p (x) :

(i)

η∏
k=1

xrk = (20)

(−1)ηt (t− 1)...(1)

((r − 1)(rn+ p− 1))...(rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− η − 1

η

)
r

.

and

(ii)

η∑
k=1

xrk = (21)

− ((r − 1)(rn+ p− 1)− r)...((r − 1)(rn+ p− 1)− r − t+ 1)

((r − 1)(rn+ p− 1))...(rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− 2

1

)
r

.

Proof. In the equation (4), if we put j = η and j = 1 we obtain the desired results,
respectively. □

Let

υη = (22)

(−1)ηt (t− 1) · · · (1)
((r − 1)(rn+ p− 1)) · · · (rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− η − 1

η

)
r

and

ψη = (23)

− ((r − 1)(rn+ p− 1)− r) · · · ((r − 1)(rn+ p− 1)− r − t+ 1)

((r − 1)(rn+ p− 1)) · · · (rn(r − 1)− t+ (p− 1)r + (2− p))

(
rn+ p− 2

1

)
r

.

Then we can give the following theorem.

Theorem 5. For t = r(r − 1)n− 2r − (1− p)(r − 1), R
(t)
rn+p (x) has

r
(
(r − 1)n−

(
t+(1−p)(r−1)

r

))
roots and these roots are

xk =

ψ2 ±
√
ψ2
2 − 4υ2

2


1
r

e
2kπi

r , (k = 0, 1, · · · , r − 1), (24)

where υ2 and ψ2 are defined by the equations (3) and (3), respectively.

Proof. Since R
(r(r−1)n−2r−(1−p)(r−1))
rn+p (x) is a polynomial of

r
(
(r − 1)n−

(
t+(1−p)(r−1)

r

))
-th degree then by using the equations (3) and (3) we

have
2∏

k=1

xrk = xr1x
r
2 = υ2 (25)
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and
2∑

k=1

xrk = xr1 + xr2 = ψ2. (26)

Since we know that xr1 = υ2

xr
2
it can be easily seen that

x2r2 − ψ2 x
r
2 + υ2 = 0.

Solving this last equation of the second degree, the roots can be easily found. So

the roots of R
(t)
rn+p (x) must be as in the equation (24). □

Since we have Fibonacci and Tribonacci polynomials for r = 2 and r = 3,
respectively, we can give the following corollaries.

Corollary 4. Let p ∈ {0, 1} and t = 2n − 5 + p. The zeros of the polynomial

F
(t)
2n+p (x) can be formulized as follows:

xk =

ψ2 ±
√
ψ2
2 − 4υ2

2


1
2

ekπi, (k = 0, 1)

where υ2 and ψ2 are defined by the equations (3) and (3), respectively.

In [23], J. Wang proved the following equation for any fixed n

L
(t)

n (x) = nF (t−1)
n (x) , n ≥ 1, (27)

where Ln (x) are Lucas polynomials. Hence the zeros of L
(t+1)

n (x) and F
(t)
n (x) are

identical.

Corollary 5. Let p ∈ {0, 1, 2} and t = 6n − 8 + 2p. The zeros of the polynomial

T
(t)
3n+p (x) are

xk =

ψ2 ±
√
ψ2
2 − 4υ2

2


1
3

e
2kπi

3 (k = 0, 1, 2), (28)

where υ2 and ψ2 are defined by the equations (3) and (3), respectively.

Now we give some examples.

Example 2. Consider the zeros of the polynomial

T
(ıv)
6 (x) = 5040x6 + 3360x3 + 144.

In the equation (28), writing ψ2 = 2/3, υ2 = 1/35, we find the zeros of this poly-
nomial as

xk =
3

√√√√2/3±
√
(2/3)

2 − 4/35

2
e

2kπi
3 , (k = 0, 1, 2)

(see Figure 3).



988 Ö. ÖZTUNÇ KAYMAK, N. ÖZGÜR
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Figure 3. The roots of T
(ıv)
6 (x).
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Figure 4. The roots of Q
(13)
8 (x)

Example 3. For p = 0, n = 2 and r = 4, let us consider the polynomial

Q
(13)
8 (x) = 93405312000 + 88921857024000x4 + 1267136462592000x8.
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Using the equations (3) and (3) we have

2∏
k=1

x4k =
1

13566
= υ2

and
2∑

k=1

x4k = − 4

57
= ψ2.

Then the roots of Q
(13)
8 (x) are generated by xk (k = 0, 1, 2, 3). By (24), the roots

of the polynomial Q
(13)
8 (x) are obtained as

x1 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
= 0.127788 + 0.127788i,

and

x2 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
= 0.36255 + 0.36255i

for k = 0,

x3 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
e

πi
2 = −0.36255 + 0.36255i

and

x4 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
e

πi
2 = −0.127788 + 0.127788i

for k = 1,

x5 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
eπi = −0.127788− 0.127788i

and

x6 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
eπi = −0.36255− 0.36255i,

for k = 2,

x7 =
4

√√√√− 4
57 +

√
(− 4

57 )
2 − 4

13566

2
e

3πi
2 = 0.127788− 0.127788i
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Figure 5. The roots of B
(18)
8 (x)

and

x8 =
4

√√√√− 4
57 −

√
(− 4

57 )
2 − 4

13566

2
e

3πi
2 = 0.36255− 0.36255i,

for k = 3 (see Figure 4).

Example 4. Let us consider the 5-Bonacci polynomials B18
8 (x). In this case, we

have p = 3, n = 1, r = 5 and we obtain

B18
8 (x) = 96035605585920000 + 1292600836944248832000x5

+84019054401376174080000x10.

The roots of this polynomial are found as follows (see Figure 5) :

xk =
5

√√√√ψ2 ±
√
ψ2
2 − 4υ2

2
e

2kπi
5 , k = 0, 1, 2, 3, 4.

4. Conclusion and Future Work

In this paper, in order to obtain new formulas for the zeros of R-Bonacci polyno-
mials and their derivatives, the most general form of the jthsymmetric polynomials

consisting of over the rth zeros of Rn(x) and R
(t)
rn+p (x) are given. Using some con-

sequences of these symmetric polynomials, some explicit formulas for the zeros of
these polynomials, which have been given in (12) and (24), are found. Although
these formulas are simple, they are valuable because they formulate the zero values
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of many R-Bonacci polynomials, which is the most general form of the Fibonacci
polynomials, and their derivatives.

Given the future studies on this topic, the zeros of the remaining R-Bonacci poly-
nomials can be formulated using different methods. For this reason, it is thought
that formulating the zeros of a R-Bonacci polynomial will increase the applicability
of this problem in different engineering applications. In addition, this study is also
thought to be a guide for formulating the zero locations of polynomials with un-
known zero locations. Because this method is applicable for all polynomial classes.
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