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Abstract 

Generalized spherical fuzzy set theory is a powerful and useful tool that is capable to process 

uncertainty and vagueness. In this study, we investigate some induced aggregation operators 

under the generalized spherical fuzzy environment with the help of Einstein norms operations to 

merge the generalized spherical fuzzy information into a single one in the decision-making 

process. After we observe some properties of the presented aggregation operators, we establish 

an algorithm to use in the solution of the multiple criteria group decision-making problems by 

using these aggregation operators and also we give an illustrative example. Then, we compare the 

results under all defined generalized spherical fuzzy Einstein aggregation operators used within 

the decision-making process. 
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1. INTRODUCTION 

 

Aggregation operators which combine data taken from multiple sources into a single value play a key role 

in computational science. So, aggregation operators have become a significant area of research in recent 

studies. Attention to the importance of this topic is given by the fact that the necessity of merging the 

information contained in a collection of pieces of information into one, especially in applied sciences. A 

sample where aggregation functions have been successfully applied is provided by the databases in which 

uncertain information can be managed. Also, another important motivation is that aggregation operators 

are one of the most significant tools in multi-criteria decision-making (MCDM) procedures to aggregate 

information in evaluation. In the multi-criteria group decision-making (MCGDM) process, decision-makers 

(DMs), participated the process, construct the decision matrices (DeMs) by evaluating the alternatives 

according to the attribute in the given problem. Aggregation functions are used to merge the DeMs 

constructed by DMs into one in this process. In both situations mentioned above, this theory has led to a 

growing interest in studying numeric functions which allow aggregation. 

 

Zadeh [1] initiated the fuzzy set (FS) theory, in 1965, to manage pragmatic events including imprecision 

and vagueness in the real-life by describing the uncertainty of an object or event via a degree of membership 

(MemD) with a value in the interval [1]. FS theory has been applied successfully in nearly every field of 

science such as engineering, artificial intelligence, computer science, economics, social sciences and etc. 

At the time,  the studies and developments related to FS theory were progressing, Atanassov [2] observed 

that there is some inadequacies in the FS theory and proposed the structure of intuitionistic fuzzy set (IFS) 

as an extension of FS. Because each element is given by MemD and a non-membership degree (NMemD) 
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in the IFS theory, IFS theory has been a more beneficial and affective tool to handle vagueness than the 

theory of FS. After, Yager [3] generalized the theory of IFS to the theory of Pythagorean fuzzy set (PyFS) 

by relaxing the condition on the MemD and NMemD. In spite of the IFS theory and PyFS theory having 

been extensively applied to a lot of areas, these theories could not capable to handle the situations that we 

face opinions including different kinds of answers such as “yes”, “abstain”, “no”, and “refusal”. We can 

consider a voting problem in a democratic election to explain such an issue. In the voting problem, the 

voters can be separated into 4 groups those who vote for, abstain, refuse the vote, and vote against. With 

this motivation, Cuong [4] suggested the notion of the picture fuzzy set (PFS) as an extension of IFS where 

the elements are described with the neutral membership degree (NeuMemD) addition to the MemD and 

NMemD. Hence, the PFS theory solved successfully the voting problem. However there were still some 

cases in that the theory of PFS can not be handled in some unstable and uncertain information. For instance, 

if one denoted their ideas about the situation in terms of “yes” is .8, “no” is .3, and “abstained” is .4,  then 

we have .8+.3+.4≰1. Thus, PFS theory was not capable to handle such kinds of cases. To solve these kinds 

of cases, Kahraman and Gündoğdu [5] proposed the theory of the spherical fuzzy set (SFS) as a 

generalization of FS, IFS and PFS. Still there existed some cases which could not be handled with the SFSs. 

For instance, if one takes MemD=.8, NeuMemD=.3 and NMemD=.6, then the sum of the squares of these 

numbers exceeds one. With this consideration, Mahmood et al. [6] presented the concept of the T-spherical 

fuzzy set (T-SFS) where the sum of the n-th power of the MemD, NeuMemD and NMemD is ≤ 1. After, 

Haque et al. [7] introduced the concept of generalized spherical fuzzy set (GSFS) as a generalization of the 

SFS where the sum of the squares of the MemD, NeuMemD and NMemD is ≤ 3. 

 

In the light of the exploration of set theories mentioned above, decision-making theory has been developed 

by processing the information of fuzzy and its extensions in two ways such as traditional methods (AHP, 

TOPSIS, VIKOR, COPRAS, WASPAS, ELECTRE, MULTIMOORA, CRITIC, TODIM, etc.) and 

methods based on aggregation operators. We now mention the decision-making techniques depend on 

aggregation operators. In literature, aggregation operators have been constructed on either algebraic 

operational laws of the related set theory or t-norms and t-conorms families such as Dombi, Hamacher, 

Einstein, etc. For instance, the weighted averaging (WA) operator (see [8]) and the ordered weighted 

averaging (OWA) operator (see [9]) have been based on the algebraic sum and algebraic product in the 

crisp manner. Xu [10] developed the intuitionistic fuzzy (IF) WA operator, IF OWA operator, and IF hybrid 

averaging operator for aggregating IF information. Wang and Liu [11] presented some IF aggregation 

operators such as the IF Einstein WA operator and the IF Einstein ordered WA operator which extend the 

WA operator and the OWA operator in the IF environment. Yager [12] proposed some kinds of aggregation 

operators such as Pythagorean fuzzy (PyF) WA operator, PyF weighted geometric average (WGA) 

operator, PyF weighted power average operator, and PyF weighted power geometric operator to use them 

in the process of solving MCDM problems with PyF information. Garg [13] presented the PyF Einstein 

WA operator, PyF Einstein ordered WA (OWA) operator, generalized PyF Einstein WA operator, and 

generalized PyF Einstein OWA operator by investigating some desirable properties and applied to decision-

making problems where experts provide their preferences in the PyF environment. Wei [14] introduced the 

picture fuzzy (PF) WA operator, PF WGA operator, PF OWA operator, PF ordered WGA operator, PF 

hybrid average operator, and PF hybrid geometric operator to develop some approaches for solving the PF 

MCDM problems. Khan et al. [15] and Munir et al. [16] described the Einstein aggregation operators (E-

aggregation operators) for PF and T-spherical fuzzy information, respectively. They also give different 

methods to solce MCGDM problems by giving illustrative examples for real-life problems. 

 

The motivation for this study can be explained as: GSFS theory is more capable to understand and process 

of vagueness and impreciseness when comparing the other fuzzy set theories. Especially, in decision-

making problems this theory allows to accomplish more information related to alternatives and criteria. To 

defuzzify the generalized spherical fuzzy (GSF) value in decision-making process, Haque et al. [7] defined 

a score function and an accuracy function in the GSF environment. They also introduced GSF weighted 

exponential averaging operator to develop a MCGDM method in the GSF environment. Then, Güner and 

Aygün [17, 18] presented the E-aggregation operators (GSF Einstein weighted averaging (GSEWA) 

operator and GSF Einstein weighted geometric (GSEWG) operator) and Hamacher aggregation operators 

for GSF information and established MCGDM methods based on these operators. They [19] give the well-

known TOPSIS method for GSF environment. Moreover, Güner and Aygün [20] studied the GSF 
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topological spaces with applications to the MCDM problems. As a recent study, Haque et al. [21] initiated 

the linguistic GSFS by combining the idea of GSFS and linguistic fuzzy set.  In addition, they presented 

various types of aggregation operators by applying to MCDM methods and also they solved the problem 

of most effective COVID-19 virus protector selection 

 

The shortcoming of the existing works and the motivation for the presented aggregation operators in this 

study can be listed as: 

 

• As seen above only a few works have been presented in the GSF environment. 

 

• An appropriate option to the algebraic product is the Einstein product (E-product), which typically 

gives the same smooth approximations as the algebraic product. Hence, Einstein based t-norm and 

Einstein based t-conorm have the best approximation for the sum and product of the generalized 

spherical fuzzy numbers (GSFNs) as the alternative to algebraic sum and algebraic product.  

 

• In the literature, it seems that there is a little investigation into aggregation techniques in GSF 

environments. Hence, there aren’t different kinds of MCGDM approaches based on aggregation 

operators.  

 

Also, the main objectives of this study are listed below: 

 

• GSF Einstein ordered weighted averaging (GSEOWA), GSF Einstein hybrid weighted averaging 

(GSEHWA), GSF Einstein ordered weighted geometric (GSEOWG) and GSF Einstein hybrid weighted 

geometric (GSEHWG) operators are described. 

 

• A model depend on the defined aggregation operators to use of the solution of the multiple attribute 

group decision-making problems consist of GSF information is established. 

 

• An illustrative application to explain the proposed algorithm step by step is shown. 

 

• The results under all defined GSF E-aggregation operators within the decision-making process are 

compared.  

 

This paper consists of five sections: Section 2 includes some basic and relevant definitions that are needed 

in the following parts. In section 3, we give GSEOWA operator, GSEHWA operator, GSEOWG operator 

and GSEHWG operator based on the E-operations (E-sum, E-product and E-scalar multiplication) for 

GSFSs. We also study some basic properties of the presented aggregation operators. Then, we establish a 

technique for solving the MCGDM problems in GSF aspect. After, we provide a problem related to the 

medical treatment selection as an application which shows that the constructed technique is suitable and 

affective for the decision-making procedure. We compare the results under all defined E-aggregation 

operators in GSF environment by considering the given problem in section 4. We mention a brief conclusion 

for future works in section 5.   

 

2. MATERIAL METHOD 

 

In this part of the study, we recollect some notions that will be needed in the next parts. On the whole paper, 

𝑈 will refer to the set of discourse of the universe and 𝐼 denotes the interval [.1]. 
 

Definition 2.1. [2, 3] Let 𝜇:𝑈 → 𝐼 and 𝜈:𝑈 → 𝐼 be any two mappings. A set  

ℐ = {(𝑥, 𝜇(𝑥), 𝜈(𝑥))|𝑥 ∈ 𝑈} is said to be a/an 

 

(i) IFS if the inequality 0 ≤ 𝜇(𝑥) + 𝜈(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈, is fulfilled.  

 

(ii) PyFS if the inequality 0 ≤ 𝜇2(𝑥) + 𝜈2(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈, is fulfilled. 
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The values 𝜇(𝑥), 𝜈(𝑥) ∈ 𝐼 describe the MemD and NMemD of 𝑥 to ℐ, respectively. 

The pair ℐ = (𝜇, 𝜈) where 𝜇, 𝜈 ∈ 𝐼 and 𝜇 + 𝜈 ≤ 1 (𝜇2 + 𝜈2 ≤ 1), is said to be an IF number (IFN) (a PyF 

number (PyFN)).  

 

Note 2.2. [3] The collection of IFNs is subset of the collection of PyFNs. 

 

Definition 2.3. [4, 5, 7] Let 𝜇: 𝑈 → 𝐼, 𝜄: 𝑈 → 𝐼 and 𝜈:𝑈 → 𝐼 be three mappings. A set  

𝐺 = {(𝑥, 𝜇(𝑥), 𝜄(𝑥), 𝜈(𝑥))|𝑥 ∈ 𝑈} is said to be a 

 

(i) PFS if the inequality 0 ≤ 𝜇(𝑥) + 𝜄(𝑥) + 𝜈(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈, is fulfilled. 

 

(ii) SFS if the inequality 0 ≤ 𝜇2(𝑥) + 𝜄2(𝑥) + 𝜈2(𝑥) ≤ 1, ∀𝑥 ∈ 𝑈, is fulfilled. 

 

(iii) GSFS if the inequality 0 ≤ 𝜇2(𝑥) + 𝜄2(𝑥) + 𝜈2(𝑥) ≤ 3, ∀𝑥 ∈ 𝑈,  is fulfilled. 

 

The values 𝜇(𝑥), 𝜄(𝑥), 𝜈(𝑥) ∈ 𝐼 denote the MemD, NeuMemD and NMemD of 𝑥 to 𝐺, respectively. 

The triplet 𝐺 = (𝜇, 𝜄, 𝜈) where 𝜇, 𝜄, 𝜈 ∈ 𝐼 and 𝜇2 + 𝜄2 + 𝜈2 ≤ 3  (𝜇 + 𝜄 + 𝜈 ≤ 1  and 𝜇2 + 𝜄2 + 𝜈2 ≤ 1, 

resp.), is said to be a GSFN (PF number (PFN) and SF number (SFN), respectively). 

 

Note 2.4. [7] (1) The collection of SFNs is subset of the collection of GSFNs and the collection of PFNs is 

subset of the collection of SFNs. 

 

(2) In the theory of PFN, because the sum of the MemD, NeuMemD and NMemD is ≤ 1, this summation 

is considered as linearly and this expresses a plane in ℝ3. However, in theory of SFN and theory of GSFN, 

we take nonlinear form of the MemD, NeuMemD and NMemD which expresses a sphere in ℝ3.  

 

Definition 2.5. [7] Let 𝑎 ≥ 0 and 𝐺 = (𝜇, 𝜄, 𝜈), 𝐺1 = (𝜇1, 𝜄1, 𝜈1), 𝐺2 = (𝜇2, 𝜄2, 𝜈2)  be three GSFNs. Then 

the algebraic operations on GSFNs are given as follows: 

 

(i) 𝐺𝑐 = (𝜈, 𝜄, 𝜇), 
 

(ii) 𝐺1 ≤ 𝐺2 iff 𝜇1 ≤ 𝜇2, 𝜄1 ≥ 𝜄2 and 𝜈1 ≥ 𝜈2, 

 

(iii) 𝐺1 = 𝐺2 iff 𝐺1 ≤ 𝐺2 and 𝐺2 ≤ 𝐺1, 

 

(iv) 𝐺1 + 𝐺2 = (√𝜇1
2 + 𝜇2

2 − 𝜇1
2𝜇2

2, 𝜄1𝜄2, 𝜈1𝜈2), 

 

(v) 𝐺𝑎 = (𝜇𝑎 , 𝜄𝑎 , √1 − (1 − 𝜈2)𝑎), 

 

(vi) 𝑎𝐺 = (√1 − (1 − 𝜇2)𝑎 , 𝜄𝑎, 𝜈𝑎). 

 

Lemma 2.6. [7] Let 𝑎, 𝑎1, 𝑎2 ≥ 0 and 𝐺1 = (𝜇1, 𝜄1, 𝜈1), 𝐺2 = (𝜇2, 𝜄2, 𝜈2) be any two GSFNs. Then the 

following assertions are fulfilled:  

 

(i) 𝐺1 + 𝐺2 = 𝐺2 + 𝐺1, 

 

(ii) 𝑎(𝐺1 + 𝐺2) = 𝑎𝐺1 + 𝑎𝐺2, 

 

(iii) 𝑎1𝐺1 + 𝑎2𝐺1 = (𝑎1 + 𝑎2)𝐺1, 

 

(vi) (𝐺1
𝑎1)

𝑎2 = 𝐺1
𝑎1𝑎2. 
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Definition 2.7. [17] Let 𝑎 ≥ 0 and 𝐺 = (𝜇, 𝜄, 𝜈), 𝐺1 = (𝜇1, 𝜄1, 𝜈1), 𝐺2 = (𝜇2, 𝜄2, 𝜈2) be three GSFNs. Then 

the E-operations are characterized on the GSFNs as follows: 

 

(i) 𝐺1⊕𝐸 𝐺2 = (√
𝜇1
2+𝜇2

2

1+𝜇1
2.𝜇2

2 , √
𝜄1
2.𝜄2

2

1+(1−𝜄1
2)(1−𝜄2

2)
, √

𝜈1
2.𝜈2

2

1+(1−𝜈1
2)(1−𝜈2

2)
), 

 

(ii) 𝐺1⊙𝐸 𝐺2 = (√
𝜇1
2.𝜇2

2

1+(1−𝜇1
2)(1−𝜇2

2)
, √

𝜄1
2.𝜄2

2

1+(1−𝜄1
2)(1−𝜄2

2)
, √

𝜈1
2+𝜈2

2

1+𝜈1
2.𝜈2

2), 

 

(iii) 𝑎 ⋅𝐸 𝐺 = (√
(1+𝜇2)𝑎−(1−𝜇2)𝑎

(1+𝜇2)𝑎+(1−𝜇2)𝑎
, √

2𝜄2𝑎

(2−𝜄2)𝑎+𝜄2𝑎
, √

2𝜈2𝑎

(2−𝜈2)𝑎+𝜈2𝑎
), 

 

(iv) 𝐺∧𝐸𝑎 = (√
2𝜇2𝑎

(2−𝜇2)𝑎+𝜇2𝑎
, √

2𝜄2𝑎

(2−𝜄2)𝑎+𝜄2𝑎
, √

(1+𝜈2)𝑎−(1−𝜈2)𝑎

(1+𝜈2)𝑎+(1−𝜈2)𝑎
). 

 

Lemma 2.8. [17] Let 𝑎, 𝑎1, 𝑎2 ≥ 0 and 𝐺1 = (𝜇1, 𝜄1, 𝜈1), 𝐺2 = (𝜇2, 𝜄2, 𝜈2) be any two GSFNs. Then the 

following assertions are fulfilled:  

 

(i) 𝐺1⊕𝐸 𝐺2 = 𝐺2⊕𝐸 𝐺1, 

 

(ii) 𝑎 ⋅𝐸 (𝐺1⊕𝐸 𝐺2) = 𝑎 ⋅𝐸 𝐺1⊕𝐸 𝑎 ⋅𝐸 𝐺2, 

 

(iii) (𝑎1 + 𝑎2) ⋅𝐸 𝐺1 = 𝑎1 ⋅𝐸 𝐺1⊕𝐸 𝑎2 ⋅𝐸 𝐺1, 

 

(iv) 𝐺1⊙𝐸 𝐺2 = 𝐺2⊙𝐸 𝐺1, 

 

(v) (𝐺1⊙𝐸 𝐺2)
∧𝐸𝑎 = 𝐺1

∧𝐸𝑎⊙𝐸 𝐺2
∧𝐸𝑎, 

 

(vi) 𝐺∧𝐸𝑎1 ⊙𝐸 𝐺
∧𝐸𝑎2 = 𝐺∧𝐸𝑎1+𝑎2, 

 

(vii) (𝐺1
∧𝐸𝑎1)

∧𝐸𝑎2
= 𝐺1

∧𝐸𝑎1𝑎2. 

 

Definition 2.9. [17] Let 𝒜 be a family of every GSFNs and (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃 where 𝐺𝑖 = (𝜇𝑖, 𝜄𝑖, 𝜈𝑖) for 

each 𝑖 = 1, 𝑛 and 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇  denote the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛   satisfying 

0 ≤ 𝑤𝑖 for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then 

 

(i) a mapping 𝐺𝑆𝐸𝑊𝐴𝑤:𝒜
𝓃 → 𝒜 is called  a GSEWA operator and is given as  

𝐺𝑆𝐸𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝑤1 ⋅𝐸 𝐺1⊕𝐸 𝑤2 ⋅𝐸 𝐺2⊕𝐸 …𝑤𝑛 ⋅𝐸 𝐺𝑛 =⊕𝑖=1
𝑛 𝑤𝑖 ⋅𝐸 𝐺𝑖 .                           (1) 

 

(ii) a mapping 𝐺𝑆𝐸𝑊𝐺𝑤:𝒜
𝓃 → 𝒜 is called a GSEWG operator and is given as  

𝐺𝑆𝐸𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = 𝐺1
∧𝐸𝑤1 ⊙𝐸 𝐺2

∧𝐸𝑤2 ⊙𝐸 …⊙𝐸 𝐺𝑛
∧𝐸𝑤𝑛 =⊙𝑖=1

𝑛 𝐺𝑖
∧𝐸𝑤𝑖 .                                                  (2) 

 

Definition 2.1. [7] Let 𝒜  be the family of all GSFNs and 𝐺 ∈ 𝒜  where  𝐺 = (𝜇, 𝜄, 𝜈). Then a/an 

 

(i) score function 𝑆𝐹:𝒜 → [−1,1] is given by 𝑆𝐹(𝐺) =
3𝜇2−2𝜄2−𝜈2

3
.  

 

(ii) accuracy function 𝐴𝐹:𝒜 → 𝐼 is given by 𝐴𝐹(𝐺) =
1+3𝜇2−𝜈2

4
. 

 

Definition 2.11. [7] Suppose that 𝐺1 = (𝜇1, 𝜄1, 𝜈1)  and 𝐺2 = (𝜇2, 𝜄2, 𝜈2)  are two GSFNs. Then the 

comparison technique (method of ranking) is considered as:  
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(i) 𝑆𝐹(𝐺1) > 𝑆𝐹(𝐺2) ⇒ 𝐺1 > 𝐺2, 

 

(ii) 𝑆𝐹(𝐺1) < 𝑆𝐹(𝐺2) ⇒ 𝐺1 < 𝐺2, 

 

(iii) If 𝑆𝐹(𝐺1) = 𝑆𝐹(𝐺2), then; 

 

(a) 𝐴𝐹(𝐺1) < 𝐴𝐹(𝐺2)  ⇒ 𝐺1 < 𝐺2, 

 

(b) 𝐴𝐹(𝐺1) > 𝐴𝐹(𝐺2)  ⇒ 𝐺1 > 𝐺2, 

 

(c) 𝐴𝐹(𝐺1) = 𝐴𝐹(𝐺2)  ⇒ 𝐺1 = 𝐺2. 

 

3. THE RESEARCH FINDINGS AND DISCUSSION 

 

In this part, we define the GSEOWA operator, GSEOWG operator, GSEHWA operator and GSEHWG 

operator based on the E-operations by investigating some basic properties of the presented aggregation 

operators. Then, we give a MCGDM technique based on these operators and show an illustrative 

application.  

 

3.1. Generalized Spherical Fuzzy Einstein Ordered Aggragation Operators 

 

Definition 3.1. Suppose that 𝒜 is a family of each GSFNs and (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃 where 𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖), 

∀𝑖 = 1, 𝑛 and 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇  denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛   satisfying 0 ≤ 𝑤𝑖 

for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then a mapping 𝐺𝑆𝐸𝑂𝑊𝐴𝑤:𝒜

𝓃 → 𝒜 is called a GSEOWA operator and is 

given by  

𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝑤1 ⋅𝐸 𝐺𝛿(1)⊕𝐸 𝑤2 ⋅𝐸 𝐺𝛿(2)⊕𝐸 …⊕𝐸 𝑤𝑛 ⋅𝐸 𝐺𝛿(𝑛) =⊕𝑖=1
𝑛 𝑤𝑖 ⋅𝐸 𝐺𝛿(𝑖)     (3) 

where 𝛿(𝑖) (𝑖 = 1, 𝑛) is the permutation wrt the score value (SV) satisfying 𝑆𝐹(𝐺𝛿(𝑖−1)) ≥ 𝑆𝐹(𝐺𝛿(𝑖)) for 

each 𝑖 = 2, 𝑛.  

 

Remark 3.2. If 𝑤 = (
1

𝑛
, … ,

1

𝑛
)
𝑇

, then 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝐺𝑆𝐸𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛),  

∀(𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. 

 

Theorem 3.3. Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then the aggregated value 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) is also a GSFN 

and is calculated by 

 

𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = (√
∏ (1+𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑛

𝑖=1 −∏ (1−𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1

∏ (1+𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ (1−𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑛

𝑖=1

, √
2∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

, √
2∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

)                  (4) 

 

Proof. Equation (4) can be proved by using the mathematical induction method on n in the next way: 

If 𝑛 = 2, we get 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, 𝐺2) = 𝑤1 ⋅𝐸 𝐺𝛿(1)⊕𝐸 𝑤2 ⋅𝐸 𝐺𝛿(2). Since 𝑤1 ⋅𝐸 𝐺𝛿(1) and 𝑤2 ⋅𝐸 𝐺𝛿(2) are 

GSFNs, then 𝑤1 ⋅𝐸 𝐺𝛿(1)⊕𝐸 𝑤2 ⋅𝐸 𝐺𝛿(2)  is also a GSFN. Then, we obtain  

 

𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, 𝐺2) = 𝑤1.𝐸 𝐺𝛿(1)⊕𝐸 𝑤2.𝐸 𝐺𝛿(2)  

 

= (√
(1+𝜇𝛿(1)

2 )
𝑤1
−(1−𝜇𝛿(1)

2 )
𝑤1

(1+𝜇𝛿(1)
2 )

𝑤1
+(1−𝜇𝛿(1)

2 )
𝑤1 , √

2𝜄
𝛿(1)
2𝑤1

(2−𝜄𝛿(1)
2 )

𝑤1
+𝜄

𝛿(1)
2𝑤1

, √
2𝜈

𝛿(1)
2𝑤1

(2−𝜈𝛿(1)
2 )

𝑤1
+𝜈

𝛿(1)
2𝑤1
)  

⊕𝐸 (√
(1+𝜇𝛿(2)

2 )
𝑤2
−(1−𝜇𝛿(2)

2 )
𝑤2

(1+𝜇𝛿(2)
2 )

𝑤2
+(1−𝜇𝛿(2)

2 )
𝑤2 , √

2𝜄
𝛿(2)
2𝑤2

(2−𝜄𝛿(2)
2 )

𝑤2
+𝜄

𝛿(2)
2𝑤2

, √
2𝜈

𝛿(2)
2𝑤2

(2−𝜈𝛿(2)
2 )

𝑤2
+𝜈

𝛿(2)
2𝑤2
)  
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=

(

 
 
 
 
 
 
 

√
  
  
  
  
  
  
 

(1+𝜇𝛿(1)
2 )

𝑤1
−(1−𝜇𝛿(1)

2 )
𝑤1

(1+𝜇𝛿(1)
2 )

𝑤1
+(1−𝜇𝛿(1)

2 )
𝑤1

+
(1+𝜇𝛿(2)

2 )
𝑤2

−(1−𝜇𝛿(2)
2 )

𝑤2

(1+𝜇𝛿(2)
2 )

𝑤2
+(1−𝜇𝛿(2)

2 )
𝑤2

1+[
(1+𝜇

𝛿(1)
2 )

𝑤1
−(1−𝜇

𝛿(1)
2 )

𝑤1

(1+𝜇𝛿(1)
2 )

𝑤1
+(1−𝜇𝛿(1)

2 )
𝑤1

][
(1+𝜇

𝛿(2)
2 )

𝑤2
−(1−𝜇

𝛿(2)
2 )

𝑤2

(1+𝜇𝛿(2)
2 )

𝑤2
+(1−𝜇𝛿(2)

2 )
𝑤2

]

 ,

√
  
  
  
  
  
  
 

(
2𝜄
𝛿(1)
2𝑤1

(2−𝜄𝛿(1)
2 )

𝑤1
+𝜄
𝛿(1)
2𝑤1

)(
2𝜄
𝛿(2)
2𝑤2

(2−𝜄𝛿(2)
2 )

𝑤2
+𝜄
𝛿(2)
2𝑤2

)

1+[1−
2𝜄
𝛿(1)
2𝑤1

(2−𝜄𝛿(1)
2 )

𝑤1
+𝜄
𝛿(1)
2𝑤1

][1−
2𝜄
𝛿(2)
2𝑤2

(2−𝜄𝛿(2)
2 )

𝑤2
+𝜄
𝛿(2)
2𝑤2

]

,

√
  
  
  
  
  
  
 

({
2𝜈
𝛿(1)
2𝑤1

(2−𝜈𝛿(1)
2 )

𝑤1
+𝜈

𝛿(1)
2𝑤1

)}(
2𝜈
𝛿(2)
2𝑤2

(2−𝜈𝛿(2)
2 )

𝑤2
+𝜈

𝛿(2)
2𝑤2

)

1+[1−
2𝜈
𝛿(1)
2𝑤1

(2−𝜈𝛿(1)
2 )

𝑤1
+𝜈

𝛿(1)
2𝑤1

][1−
2𝜈
𝛿(2)
2𝑤2

(2−𝜈𝛿(2)
2 )

𝑤2
+𝜈

𝛿(2)
2𝑤2

]

)

 
 
 
 
 
 
 

  

 

=

(

 
 
 
√
(1+𝜇𝛿(1)

2 )
𝑤1

.(1+𝜇𝛿(2)
2 )

𝑤2
−(1−𝜇𝛿(1)

2 )
𝑤1

.(1−𝜇𝛿(2)
2 )

𝑤2

(1+𝜇𝛿(1)
2 )

𝑤1
.(1+𝜇𝛿(2)

2 )
𝑤2

+(1−𝜇𝛿(1)
2 )

𝑤1
.(1−𝜇𝛿(2)

2 )
𝑤2 ,√

2𝜄
𝛿(1)
2𝑤1.𝜄

𝛿(2)
2𝑤2

(2−𝜄𝛿(1)
2 )

𝑤1
.(2−𝜄𝛿(2)

2 )
𝑤2

+𝜄
𝛿(1)
2𝑤1.𝜄

𝛿(2)
2𝑤2

,

√
2𝜈
𝛿(1)
2𝑤1.𝜈

𝛿(2)
2𝑤2

(2−𝜈𝛿(1)
2 )

𝑤1
.(2−𝜈𝛿(2)

2 )
𝑤2

+𝜈
𝛿(1)
2𝑤1.𝜈

𝛿(2)
2𝑤2

)

 
 
 

  

 

= (√
∏ (1+𝜇𝛿(𝑖)

2 )
𝑤𝑖2

𝑖=1 −∏ (1−𝜇𝛿(𝑖)
2 )

𝑤𝑖2
𝑖=1

∏ (1+𝜇𝛿(𝑖)
2 )

𝑤𝑖2
𝑖=1 +∏ (1−𝜇𝛿(𝑖)

2 )
𝑤𝑖2

𝑖=1

, √
2∏ 𝜄

𝛿(𝑖)

2𝑤𝑖2
𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖2
𝑖=1 +∏ 𝜄

𝛿(𝑖)

2𝑤𝑖2
𝑖=1

, √
2∏ 𝜈

𝛿(𝑖)

2𝑤𝑖2
𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖2
𝑖=1 +∏ 𝜈

𝛿(𝑖)

2𝑤𝑖2
𝑖=1

)  

 

Hence, the Equation (4) is fulfilled for 𝑛 = 2. Now, we suppose that the Equation (4) is fulfilled for  

𝑛 = 𝑘: 

 

𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑘) = 𝑤1 ⋅𝐸 𝐺𝛿(1)⊕𝐸 𝑤2 ⋅𝐸 𝐺𝛿(2)⊕𝐸 …⊕𝐸 𝑤𝑘 ⋅𝐸 𝐺𝛿(𝑘)  

 

= (√
∏ (1+𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑘

𝑖=1 −∏ (1−𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1

∏ (1+𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ (1−𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑘

𝑖=1

, √
2∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

, √
2∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

).  

 

Similarly, we show that the Equation (4) is fulfilled for 𝑛 = 𝑘 + 1. Then, we have 

 

𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑘 , 𝐺𝑘+1) = 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑘)⊕𝐸 𝑤𝑘+1𝐺𝛿(𝑘+1)  

 

= (√
∏ (1+𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑘

𝑖=1 −∏ (1−𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1

∏ (1+𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ (1−𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑘

𝑖=1

, √
2∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

, √
2∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑘
𝑖=1

)   

   

⊕𝐸 (√
(1+𝜇𝛿(𝑘+1)

2 )
𝑤𝑘+1

−(1−𝜇𝛿(𝑘+1)
2 )

𝑤𝑘+1

(1+𝜇𝛿(𝑘+1)
2 )

𝑤𝑘+1
+(1−𝜇𝛿(𝑘+1)

2 )
𝑤𝑘+1

, √
2𝜄
𝛿(𝑘+1)

2𝑤𝑘+1

(2−𝜄𝛿(𝑘+1)
2 )

𝑤𝑘+1
+𝜄

𝛿(𝑘+1)

2𝑤𝑘+1
, √

2𝜈
𝛿(𝑘+1)
2𝑤1

(2−𝜈𝛿(𝑘+1)
2 )

𝑤𝑘+1
+𝜈

𝛿(𝑘+1)

2𝑤𝑘+1
)  

=

(

 
 
 
 
 
 
 

√
  
  
  
  
  
  
 
∏ (1+𝜇𝛿(𝑘+1)

2 )
𝑤𝑖𝑘

𝑖=1 −∏ (1−𝜇𝛿(𝑘+1)
2 )

𝑤𝑖𝑘
𝑖=1

∏ (1+𝜇𝛿(𝑘+1)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ (1−𝜇𝛿(𝑘+1)

2 )
𝑤𝑖𝑘

𝑖=1

+
(1+𝜇𝛿(𝑘+1)

2 )
𝑤𝑘+1

−(1−𝜇𝛿(𝑘+1)
2 )

𝑤𝑘+1

(1+𝜇𝛿(𝑘+1)
2 )

𝑤𝑘+1
+(1−𝜇𝛿(𝑘+1)

2 )
𝑤𝑘+1

1+(
∏ (1+𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑘

𝑖=1 −∏ (1−𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1

∏ (1+𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ (1−𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑘

𝑖=1

)(
(1+𝜇𝛿(𝑘+1)

2 )
𝑤𝑘+1

−(1−𝜇𝛿(𝑘+1)
2 )

𝑤𝑘+1

(1+𝜇𝛿(𝑘+1)
2 )

𝑤𝑘+1
+(1−𝜇𝛿(𝑘+1)

2 )
𝑤𝑘+1

)

,

√
  
  
  
  
  
  
 
 

(
2∏ 𝜄

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜄

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

)(
2𝜄
𝛿(𝑘+1)
2𝑤𝑘+1

(2−𝜄𝛿(𝑘+1)
2 )

𝑤𝑘+1
+𝜄
𝛿(𝑘+1)
2𝑤𝑘+1

)

1+(1−
2∏ 𝜄

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜄

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

)(1−
2𝜄
𝛿(𝑘+1)
2𝑤𝑘+1

(2−𝜄𝛿(𝑘+1)
2 )

𝑤𝑘+1
+𝜄
𝛿(𝑘+1)
2𝑤𝑘+1

)

,

√
  
  
  
  
  
  
 
 

(
2∏ 𝜈

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜈

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

)(
2𝜈
𝛿(𝑘+1)
2𝑤𝑘+1

(2−𝜈𝛿(𝑘+1)
2 )

𝑤𝑘+1
+𝜈

𝛿(𝑘+1)
2𝑤𝑘+1

)

1+(1−
2∏ 𝜈

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑘
𝑖=1 +∏ 𝜈

𝛿(𝑖)
2𝑤𝑖𝑘

𝑖=1

)(1−
2𝜈
𝛿(𝑘+1)
2𝑤𝑘+1

(2−𝜈𝛿(𝑘+1)
2 )

𝑤𝑘+1
+𝜈

𝛿(𝑘+1)
2𝑤𝑘+1

)

)

 
 
 
 
 
 
 

.  
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Thus, the Equation (4) is fulfilled for 𝑛 = 𝑘 + 1. Thus, by the mathematical induction method the Equation 

(4) is valid for each 𝑛 ∈ ℕ. 

 

Lemma 3.4. (i) (Idempotency of 𝐺𝑆𝐸𝑂𝑊𝐴𝑤 operator) If 𝐺𝑖 = 𝐺, ∀𝑖 = 1, 𝑛 where 𝐺 = (𝜇, 𝜄, 𝜈),   
𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖) and 𝔴= (𝑤1,… ,𝑤𝑛)𝑇 denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1

𝑛  satisfying 

0 ≤ 𝑤𝑖 for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, then 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝐺. 

 

(ii) (Boundedness of 𝐺𝑆𝐸𝑂𝑊𝐴𝑤 operator) Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then,  

 

𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 ≤ 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝑖. 

Here, 𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛

𝜈𝑖) and 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜈𝑖). 

 

(iii) (Monotonicity of 𝐺𝑆𝐸𝑂𝑊𝐴𝑤 operator) Let (𝐺1, … , 𝐺𝑛), (𝐺1
′ , … , 𝐺𝑛

′ ) ∈ 𝒜𝓃. If 𝐺𝑖 ≤ 𝐺𝑖
′ for each  

𝑖 = 1, 𝑛, then 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1
′ , … , 𝐺𝑛

′ ).  
 

Proof. (i) Let 𝐺𝑖 = 𝐺, ∀𝑖 = 1, 𝑛 where 𝐺 = (𝜇, 𝜄, 𝜈) and  𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖). It follows that 𝐺𝛿(𝑖) = 𝐺 for each 

𝑖 = 1, 𝑛.  Suppose that 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇 denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛  satisfying  

0 ≤ 𝑤𝑖 for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Since  𝐺𝛿(𝑖) = 𝐺, ∀𝑖 = 1, 𝑛, we have that 𝜇𝛿(𝑖) = 𝜇, 𝜄𝛿(𝑖) = 𝜄 and 

𝜈𝛿(𝑖) = 𝜈 for each 𝑖 = 1, 𝑛. Then  

 

𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = (√
∏ (1+𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑛

𝑖=1 −∏ (1−𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1

∏ (1+𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ (1−𝜇𝛿(𝑖)

2 )
𝑤𝑖𝑛

𝑖=1

, √
2∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

 , √
2∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

∏ (2−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ 𝜈

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

)  

 

= (√
∏ (1+𝜇2)𝑤𝑖𝑛
𝑖=1 −∏ (1−𝜇2)𝑤𝑖𝑛

𝑖=1

∏ (1+𝜇2)𝑤𝑖𝑛
𝑖=1 +∏ (1−𝜇2)𝑤𝑖𝑛

𝑖=1

, √
2∏ 𝜄2𝑤𝑖𝑛

𝑖=1

∏ (2−𝜄2)𝑤𝑖𝑛
𝑖=1 +∏ 𝜄2𝑤𝑖𝑛

𝑖=1

, √
2∏ 𝜈2𝑤𝑖𝑛

𝑖=1

∏ (2−𝜈2)𝑤𝑖𝑛
𝑖=1 +∏ 𝜈2𝑤𝑖𝑛

𝑖=1
)  

 

= (√
(1+𝜇2)

∑ 𝑤𝑖
𝑛
𝑖=1 −(1−𝜇2)

∑ 𝑤𝑖
𝑛
𝑖=1

(1+𝜇2)
∑ 𝑤𝑖
𝑛
𝑖=1 +(1−𝜇2)

∑ 𝑤𝑖
𝑛
𝑖=1

, √
2𝜄
∑ 2𝑤𝑖
𝑛
𝑖=1

(2−𝜄2)
∑ 𝑤𝑖
𝑛
𝑖=1 +𝜄

∑ 2𝑤𝑖
𝑛
𝑖=1

, √
2𝜈

∑ 2𝑤𝑖
𝑛
𝑖=1

(2−𝜈2)
∑ 𝑤𝑖
𝑛
𝑖=1 +𝜈

∑ 2𝑤𝑖
𝑛
𝑖=1

) = (𝜇, 𝜄, 𝜈) = 𝐺. 

 

(ii) Let 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇 denote the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛  satisfying 0 ≤ 𝑤𝑖 for each 

𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Take 𝑓1(𝑥) =

1−𝑥2

1+𝑥2
 where 𝑥 ∈ 𝐼, then 𝑓1

′(𝑥) =
−4𝑥

(1+𝑥2)2
≤. ∀𝑥 ∈ 𝐼. Thus 𝑓1 is a 

nonincreasing function on 𝐼. Since 𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖  ≤ 𝜇𝛿(𝑗) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖, ∀𝑗 = 1, 𝑛, then 𝑓1 (𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 ) ≤ 𝑓1(𝜇𝛿(𝑗)) ≤

𝑓1 (𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖) for each 𝑗 = 1, 𝑛. Hence, we have      

 

(
1−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜇𝑖 )

2

1+(𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 )

2)

𝑤𝑗

≤ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)
𝑤𝑗

≤ (
1−(𝑚𝑖𝑛

𝑖=1,𝑛
𝜇𝑖)

2

1+(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2)

𝑤𝑗

  

 

for every 𝑗 = 1, 𝑛. Thus,   

 

∏ (
1−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜇𝑖 )

2

1+(𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 )

2)

𝑤𝑗

𝑛
𝑗=1 ≤ ∏ (

1−𝜇𝛿(𝑗)
2

1+𝜇𝛿(𝑗)
2)
𝑤𝑗

𝑛
𝑗=1 ≤ ∏ (

1−(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2

1+(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2)

𝑤𝑗

𝑛
𝑗=1      
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⇔ (
1−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜇𝑖 )

2

1+(𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 )

2)

∑ 𝑤𝑗
𝑛
𝑗=1

≤ ∏ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)
𝑤𝑗

𝑛
𝑗=1 ≤ (

1−(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2

1+(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2)

∑ 𝑤𝑗
𝑛
𝑗=1

  

 

⇔
1−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜇𝑖 )

2

1+(𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 )

2 ≤ ∏ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)
𝑤𝑗

𝑛
𝑗=1 ≤

1−(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2

1+(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2    

⇔
2

1+(𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 )

2 ≤ ∏ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)
𝑤𝑗

𝑛
𝑗=1 + 1 ≤

2

1+(𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)

2  

 

⇔
1+(𝑚𝑖𝑛

𝑖=1,𝑛
𝜇𝑖)

2

2
≤

1

1+∏ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)

𝑤𝑗
𝑛
𝑗=1

≤
1+(𝑚𝑎𝑥

𝑖=1,𝑛
𝜇𝑖 )

2

2
 ⇔ (𝑚𝑖𝑛

𝑖=1,𝑛
𝜇𝑖)

2

≤
2

1+∏ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)

𝑤𝑗
𝑛
𝑗=1

− 1 ≤ (𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖)
2

  

 

⇔ (𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖)
2

≤
1−∏ (

1−𝜇𝛿(𝑗)
2

1+𝜇𝛿(𝑗)
2)

𝑤𝑗
𝑛
𝑗=1

1+∏ (
1−𝜇𝛿(𝑗)

2

1+𝜇𝛿(𝑗)
2)

𝑤𝑗
𝑛
𝑗=1

 ≤ (𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖  )
2

  

⇔   𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖 ≤ √
∏ (1+𝜇𝛿(𝑗)

2)𝑛
𝑗=1 −∏ (1−𝜇𝛿(𝑗)

2)
𝑤𝑗𝑛

𝑗=1

∏ (1+𝜇𝛿(𝑗)
2)𝑛

𝑗=1 +∏ (1−𝜇𝛿(𝑗)
2)
𝑤𝑗𝑛

𝑗=1

 ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖  . 

 

Let 𝑓2(𝑥) =
2−𝑥2

𝑥2
  where 𝑥 ∈ (. 1] , then 𝑓2

′(𝑥) =
−4

𝑥3
<. ∀𝑥 ∈ (. 1], Thus, 𝑓2  is a nonincreasing function 

on the interval (. 1]. Since we have 𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖 ≤ 𝜄𝛿(𝑗) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖, ∀𝑗 = 1, 𝑛, then 𝑓2 (𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖) ≤ 𝑓2(𝜄𝛿(𝑗)) ≤

𝑓2 (𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖) for each 𝑗 = 1, 𝑛. Hence, we have 

 

(
2−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜄𝑖 )

2

(𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )

2 )

𝑤𝑗

≤ (
2−𝜄𝛿(𝑗)

2

𝜄𝛿(𝑗)
2 )

𝑤𝑗

 ≤ (
2−(𝑚𝑖𝑛

𝑖=1,𝑛
𝜄𝑖)

2

(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2 )

𝑤𝑗

 

 

for all 𝑗 = 1, 𝑛. Thus, 

 

∏ (
2−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜄𝑖 )

2

(𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )

2 )

𝑤𝑗

𝑛
𝑗=1 ≤ ∏ (

2−𝜄𝛿(𝑗)
2

𝜄𝛿(𝑗)
2 )

𝑤𝑗
𝑛
𝑗=1 ≤ ∏ (

2−(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2

(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2 )

𝑤𝑗

𝑛
𝑗=1    

⇔ (
2−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜄𝑖 )

2

(𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )

2 )

∑ 𝑤𝑗
𝑛
𝑗=1

≤ ∏ (
2−𝜄𝛿(𝑗)

2

𝜄𝛿(𝑗)
2 )

𝑤𝑗
𝑛
𝑗=1 ≤ (

2−(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2

(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2 )

∑ 𝑤𝑗
𝑛
𝑗=1

  

 

⇔
2−(𝑚𝑎𝑥

𝑖=1,𝑛
𝜄𝑖 )

2

(𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )

2 ≤ ∏ (
2−𝜄𝛿(𝑗)

2

𝜄𝑖
2 )

𝑤𝛿(𝑗)
𝑛
𝑗=1 ≤

2−(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2

(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2   
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⇔
2

(𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )

2 ≤ ∏ (
2−𝜄𝛿(𝑗)

2

𝜄𝛿(𝑗)
2 )

𝑤𝑗
𝑛
𝑗=1 + 1 ≤

2

(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2  ⇔
(𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)

2

2
≤

1

1+∏ (
2−𝜄𝛿(𝑗)

2

𝜄𝛿(𝑗)
2 )

𝑤𝑗
𝑛
𝑗=1

≤
(𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )

2

2
   

 

⇔ (𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖)
2

≤
2

1+∏ (
2−𝜄𝛿(𝑗)

2

𝜄𝑖
2 )

𝑤𝑗
𝑛
𝑗=1

≤ (𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 )
2

⇔ 𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖 ≤ √
2∏ 𝜄𝛿(𝑗)

2𝑤𝑗𝑛
𝑗=1

∏ (2−𝜄𝛿(𝑗)
2)
𝑤𝑗𝑛

𝑗=1 +∏ 𝜄𝛿(𝑗)
2𝑤𝑗𝑛

𝑗=1

≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖   (5)         

 

Additionally, it is clear that (5) is fulfilled even if 𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖  =. Also, we have with the similar consideration 

that  

 

𝑚𝑖𝑛
𝑖=1,𝑛

𝜈𝑖 ≤ √
2∏ 𝜈𝛿(𝑗)

2𝑤𝑗𝑛
𝑗=1

∏ (2−𝜈𝛿(𝑗)
2)
𝑤𝑗𝑛

𝑗=1 +∏ 𝜈𝛿(𝑗)
2𝑤𝑗𝑛

𝑗=1

 ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝜈𝑖. 

 

By the Definition 3.1, we obtain that 𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝛿(𝑖) ≤ 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝛿(𝑖). 

 

(iii) This assertion can be easily proved similar to (i). 

 

Definition 3.5. Suppose that 𝒢 is a family of each GSFNs and (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃 where 𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖) for 

each 𝑖 = 1, 𝑛 and 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇 denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛  satisfying  

0 ≤ 𝑤𝑖 for each i and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then a mapping 𝐺𝑆𝐸𝑂𝑊𝐺𝑤:𝒜

𝓃 → 𝒜 is said to be a GSEOWG 

operator and is given by 

 

𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛)   = 𝐺𝛿(1)
∧𝐸𝑤1 ⊙𝐸 𝐺𝛿(2)

∧𝐸𝑤2 ⊙𝐸 …⊙𝐸 𝐺𝛿(𝑛)
∧𝐸𝑤𝑛 =⊙𝑖=1

𝑛 𝐺𝛿(𝑖)
∧𝐸𝑤𝑖                                         (6) 

 

where 𝛿(𝑖)(𝑖 = 1, 𝑛) is the permutation wrt the SV satisfying 𝑆𝐹(𝐺𝛿(𝑖−1)) ≥ 𝑆𝐹(𝐺𝛿(𝑖)), ∀𝑖 = 2, 𝑛. 

 

Remark 3.6. If 𝑤 = (
1

𝑛
, … ,

1

𝑛
)
𝑇

, then 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = 𝐺𝑆𝐸𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛), ∀(𝐺1, … , 𝐺𝑛) ∈

𝒜𝓃. 

 

Theorem 3.7. Let (𝐺1, … , 𝐺𝑛) ∈ 𝒢
𝓃. Then the aggregated value 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) is also a GSFN 

and is calculated by 

 

𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = 

 

(√
2∏ 𝜇

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

∏ (2−𝜇𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ 𝜇

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

, √
2∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

∏ (2−𝜄𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ 𝜄

𝛿(𝑖)

2𝑤𝑖𝑛
𝑖=1

, √
∏ (1+𝜈𝛿(𝑖)

2 )
𝑤𝑖𝑛

𝑖=1 −∏ (1−𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1

∏ (1+𝜈𝛿(𝑖)
2 )

𝑤𝑖𝑛
𝑖=1 +∏ (1−𝜈𝛿(𝑖)

2 )
𝑤𝑖𝑛

𝑖=1

)                              (7) 

 

Proof. This assertion can be shown with a similar process to Theorem 3.3. 

 

Lemma 3.8. (i) (Idempotency of 𝐺𝑆𝐸𝑂𝑊𝐺𝑤 operator) If 𝐺𝑖 = 𝐺, ∀𝑖 = 1, 𝑛 where 𝐺 = (𝜇, 𝜄, 𝜈),   
𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖) and 𝔴= (𝑤1,… ,𝑤𝑛)𝑇 denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1

𝑛  satisfying  

0 ≤ 𝑤𝑖 for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, then 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = 𝐺. 

 

(ii) (Boundedness of 𝐺𝑆𝐸𝑂𝑊𝐺𝑤 operator) Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then,  

 

𝑚𝑖𝑛
𝑖=1,𝑛 

𝐺𝑖 ≤ 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛 

𝐺𝑖 . 
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Here, 𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑖𝑛
𝑖=1,𝑛 

𝜇𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛 

𝜄𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛 

𝜈𝑖) and 𝑚𝑎𝑥
𝑖

𝐺𝑖 = (𝑚𝑎𝑥
𝑖=1,𝑛 

𝜇𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜈𝑖). 

(iii) (Monotonicity of 𝐺𝑆𝐸𝑂𝑊𝐺𝑤 operator) Let (𝐺1, … , 𝐺𝑛), (𝐺1
′ , … , 𝐺𝑛

′ ) ∈ 𝒜𝓃. If 𝐺𝑖 ≤ 𝐺𝑖
′, ∀𝑖 = 1, 𝑛, then 

𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1
′ , … , 𝐺𝑛

′ ).  
 

Proof. These assertions can be easily proved with a similar process to Lemma 3.4. 

 

3.2. Generalized Spherical Fuzzy Einstein Hybrid Aggragation Operators 

 

Definition 3.9. Suppose that 𝒜 is a family of each GSFNs and (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃 where 𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖),  

∀𝑖 = 1, 𝑛 and 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇  denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛   satisfying 0 ≤ 𝑤𝑖 

for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then a mapping 𝐺𝑆𝐸𝐻𝑊𝐴𝑤:𝒜

𝓃 → 𝒜 is called a GSEHWA operator and is 

given by  

 

𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝑤1 ⋅𝐸 𝐺𝛿(1)
∗ ⊕𝐸 𝑤2 ⋅𝐸 𝐺𝛿(2)

∗ ⊕𝐸 …𝑤𝑛 ⋅𝐸 𝐺𝛿(𝑛)
∗ = ⊕𝑖=1

𝑛 𝑤𝑖 ⋅𝐸 𝐺𝛿(𝑖)
∗              (8) 

 

where 𝛿(𝑖)(𝑖 = 1, 𝑛) is the permutation wrt the SV satisfying 𝑆𝐹(𝐺𝛿(𝑖−1)) ≥ 𝑆𝐹(𝐺𝛿(𝑖)), ∀𝑖 = 2, 𝑛 and 

𝐺𝛿(𝑖)
∗ = 𝑛𝑤𝑖𝐺𝛿(𝑖), ∀𝑖 = 1, 𝑛. 

 

Remark 3.1. If 𝑤 = (
1

𝑛
, … ,

1

𝑛
)
𝑇
, then 𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝐺𝑆𝐸𝑂𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛), ∀(𝐺1, … , 𝐺𝑛) ∈

𝒜𝓃. 

 

Theorem 3.11. Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then the aggregated value 𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) is also a GSFN 

and is calculated by 

𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) =

(

 
 
 
 
 
 √

∏ (1+(𝜇𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 −∏ (1−(𝜇𝛿(𝑖)

∗ )
2
)
𝑤𝑖

𝑛
𝑖=1

∏ (1+(𝜇𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 +∏ (1−(𝜇𝛿(𝑖)

∗ )
2
)
𝑤𝑖

𝑛
𝑖=1

,

√
2∏ (𝜄𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

∏ (2−(𝜄𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 +∏ (𝜄𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

, √
2∏ (𝜈𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

∏ (2−(𝜈𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 +∏ (𝜈𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

)

 
 
 
 
 
 

. 

 

Proof. This assertion can be shown with a similar process to Theorem 3.3. 

 

Lemma 3.12. (i) (Idempotency of 𝐺𝑆𝐸𝐻𝑊𝐴𝑤 operator) If 𝐺𝑖 = 𝐺, ∀𝑖 = 1, 𝑛 where 𝐺 = (𝜇, 𝜄, 𝜈),  𝐺𝑖 =
(𝜇𝑖 , 𝜄𝑖, 𝜈𝑖) and 𝔴= (𝑤1,… ,𝑤𝑛)𝑇 denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1

𝑛  satisfying 0 ≤ 𝑤𝑖 
for each 𝑖, and ∑ 𝑤𝑖

𝑛
𝑖=1 = 1, then 𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) = 𝐺. 

 

(ii) (Boundedness of 𝐺𝑆𝐸𝐻𝑊𝐴𝑤 operator) Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then, 

 

𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 ≤ 𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝑖 . 

Here, 𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛

𝜈𝑖) and 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜈𝑖). 

 

(iii) (Monotonicity of 𝐺𝑆𝐸𝐻𝑊𝐴𝑤 operator) Let (𝐺1, … , 𝐺𝑛), (𝐺1
′ , … , 𝐺𝑛

′ ) ∈ 𝒜𝓃. If 𝐺𝑖 ≤ 𝐺𝑖
′, ∀𝑖 = 1, 𝑛, then 

𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝐺𝑆𝐸𝐻𝑊𝐴𝑤(𝐺1
′ , … , 𝐺𝑛

′ ).  
 

Proof. These assertions can be easily proved with a similar process to Lemma 3.4. 
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Definition 3.13. Suppose that 𝒜 is a collection of each GSFNs and (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃 where  

𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖), ∀𝑖 = 1, 𝑛 and 𝔴 = (𝑤1,… ,𝑤𝑛)𝑇  denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1
𝑛   

satisfying 0 ≤ 𝑤𝑖 for each 𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1. Then a mapping 𝐺𝑆𝐸𝐻𝑊𝐺𝑤:𝒜

𝓃 → 𝒜 is said to be a 

GSEHWG operator and is given as 

 

𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = (𝐺𝛿(1)
∗ )

∧𝐸𝑤1
⊙𝐸 (𝐺𝛿(2)

∗ )
∧𝐸𝑤2

⊙𝐸 …⊙𝐸 (𝐺𝛿(𝑛)
∗ )

∧𝐸𝑤𝑛
= ⊙𝑖=1

𝑛 (𝐺𝛿(𝑖)
∗ )

∧𝐸𝑤𝑖
       (9) 

 

where 𝛿(𝑖) (𝑖 = 1, 𝑛) is the permutation wrt the SV satisfying 𝑆𝐹(𝐺𝛿(𝑖−1)) ≥ 𝑆𝐹(𝐺𝛿(𝑖)), ∀𝑖 = 2, 𝑛 and 

𝐺𝛿(𝑖)
∗ = 𝐺𝛿(𝑖)

𝑛𝑤𝑖, ∀𝑖 = 1, 𝑛. 

 

Remark 3.14. If 𝑤 = (
1

𝑛
, … ,

1

𝑛
)
𝑇

, then 𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛), ∀(𝐺1, … , 𝐺𝑛) ∈

𝒜𝓃. 

 

Theorem 3.15. Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then the aggregated value 𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) is also a GSFN 

and is calculated by using 

 

𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = (√
2∏ (𝜇𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

∏ (2−(𝜇𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 +∏ (𝜇𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

√
2∏ (𝜄𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

∏ (2−(𝜄𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 +∏ (𝜄𝛿(𝑖)

∗ )
2𝑤𝑖𝑛

𝑖=1

, √
∏ (1+(𝜈𝛿(𝑖)

∗ )
2
)
𝑤𝑖

𝑛
𝑖=1 −∏ (1−(𝜈𝛿(𝑖)

∗ )
2
)
𝑤𝑖

𝑛
𝑖=1

∏ (1+(𝜈𝛿(𝑖)
∗ )

2
)
𝑤𝑖

𝑛
𝑖=1 +∏ (1−(𝜈𝛿(𝑖)

∗ )
2
)
𝑤𝑖

𝑛
𝑖=1

).  

 

 

Proof. This assertion can be shown with a similar process to Theorem 3.3. 

 

Lemma 3.16. (i) (Idempotency of 𝐺𝑆𝐸𝐻𝑊𝐺𝑤 operator) If 𝐺𝑖 = 𝐺, ∀𝑖 = 1, 𝑛 where 𝐺 = (𝜇, 𝜄, 𝜈),  
𝐺𝑖 = (𝜇𝑖 , 𝜄𝑖, 𝜈𝑖) and 𝔴= (𝑤1,… ,𝑤𝑛)𝑇 denotes the vector of weight corresponding to (𝐺𝑖)𝑖=1

𝑛  satisfying  

0 ≤ 𝑤𝑖, ∀𝑖 and ∑ 𝑤𝑖
𝑛
𝑖=1 = 1, then 𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) = 𝐺. 

 

(ii) (Boundedness of 𝐺𝑆𝐸𝐻𝑊𝐺𝑤 operator) Let (𝐺1, … , 𝐺𝑛) ∈ 𝒜
𝓃. Then,  

 

𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 ≤ 𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝑖 . 

Here, 𝑚𝑖𝑛
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑖𝑛
𝑖=1,𝑛

𝜇𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑎𝑥
𝑖=1,𝑛

𝜈𝑖) and 𝑚𝑎𝑥
𝑖=1,𝑛

𝐺𝑖 = (𝑚𝑎𝑥
𝑖=1,𝑛

𝜇𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜄𝑖 , 𝑚𝑖𝑛
𝑖=1,𝑛

𝜈𝑖). 

 

(iii) (Monotonicity of 𝐺𝑆𝐸𝐻𝑊𝐺𝑤 operator) Let (𝐺1, … , 𝐺𝑛), (𝐺1
′ , … , 𝐺𝑛

′ ) ∈ 𝒜𝓃. If 𝐺𝑖 ≤ 𝐺𝑖′, ∀𝑖 = 1, 𝑛, 

then 𝐺𝑆𝐸𝑂𝑊𝐺𝑤(𝐺1, … , 𝐺𝑛) ≤ 𝐺𝑆𝐸𝐻𝑊𝐺𝑤(𝐺1
′ , … , 𝐺𝑛

′ ).  
 

Proof. These assertions can be easily proved in a similar way as the proof of Lemma 3.4. 
 

3.3. A Method to Solve the MCGDM Problem with Induced Generalized Spherical Fuzzy Einstein 

Aggregation Operators 

 

Suppose that 𝐴 = {𝐴1, … , 𝐴𝑚} denotes the set of m different options and 𝐸 = {E1, … , 𝐸𝑛} is the set of n 

different attributes. Assume that 𝔴 = (𝑤1, … , 𝑤𝑛) denotes the vector of weight of the criteria Ei (i = 1, 𝑛) 

where 0 ≤ wi for each i = 1, 𝑛 and ∑ wi
n
i=1 = 1. Assume that D = {D1, … , Dk} demonstrates the set of 𝑘 

different DMs with the choices whose vector of weight is given by 𝔡 = (δ1, … , δk) where 0 ≤ δi for each 

i = 1, 𝑘 and ∑ δi
k
i=1 = 1. The vector of weight 𝔡 has been considered via the education, age, experience, 

knowledge power  and thinking ability of the DM. In fact, firstly, DeMs combined with alternatives to 

criteria values are established by evaluating the opinions of the DMs. However now, we take the entity of 

the DeMs as GSFNs and are shown by Bij
r = (μij

r , ιij
r , νij

r ), (i = 1,𝑚), (r = 1, 𝑘), (j = 1, 𝑛) and the 

combined DeM is written in Table 1. 
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Table 1. DeM 𝐷𝑟 

 E1 E2 … En 

A1 B11
r  B12

r  … B1n
r  

A2 B21
r  B22

r  … B2n
r  

      …       …       … …       … 

Am Bm1
r  Bm2

r  … Bmn
r  

 

Now, we establish the MCGDM process under the GSF environment based on the next steps: 

 

Step I: Consider the either GSEOWA, GSEOWG, GSEHWA or GSEHWG operators on all DeM Dr with 

the vector of weight 𝔴 = (𝑤1, … , 𝑤𝑛) to get the following matrix. 

 

Table 2. Aggregated values 

 Fm×1
1  Fm×1

2  … Fm×1
n  

 E1 E2 … En 

A1 C11
1  C11

2  … C11
n  

A2 C21
1  C21

2  … C21
n  

      …       …        … …       … 

Am Cm1
1  Cm1

2  … Cm1
n  

 

Step II: Calculate the scores of all attributes of each alternatives given in Table 2 by using the score function  

SF(G) =
3μ2−2ι2−ν2

3
. 

 

Table 3. Scores of all attributes of each alternatives 

 E1 E2 … En 

A1 SF(C11
1 ) SF(C11

2 ) … SF(C11
n ) 

A2 SF(C21
1 ) SF(C21

2 ) … SF(C21
n ) 

      …      …       … …     … 

Am SF(Cm1
1 ) SF(Cm1

2 ) … SF(Cm1
n ) 

 

Step III: Order the values of Table 2 basing on above score analysis given in Table 3 to get the Table 4. 

 

Table 4. Reordered aggregated values 

 Fm×1
1  Fm×1

2  … Fm×1
n  

 E1 E2 … En 

Aδ(1)  C11
1∗  C11

2∗  … C11
n∗  

Aδ(2) C21
1∗  C21

2∗  … C21
1∗  

… … … … … 

Aδ(m) Cm1
1∗  Cm1

2∗  … Cm1
n∗  

 

Step IV: Apply the DM's vector of weight (𝔡) under the E-operations of GSFNs to evalute the result matrix 

D. This matrix is calculated as follows: 

 

𝐷 = {
∑ 𝛿𝑖
𝑘
𝑖=1 𝐹𝑚×1

𝑖 ,   𝑤ℎ𝑒𝑛 𝐺𝑆𝐸𝑂𝑊𝐴 (𝑜𝑟 𝐺𝑆𝐸𝐻𝑊𝐴) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑠 𝑢𝑠𝑒𝑑

∑ (𝐹𝑚×1
𝑖 )

𝛿𝑖𝑘
𝑖=1 , 𝑤ℎ𝑒𝑛 𝐺𝑆𝐸𝑂𝑊𝐺 (𝑜𝑟 𝐺𝑆𝐸𝐻𝑊𝐺) 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑖𝑠 𝑢𝑠𝑒𝑑
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where (Fm×1
i )

δi
=

(

 
 (C11

i )
δi

(C21
i )

δi

⋮

(Cm1
i )

δi)

 
 

. Denote this matrix as given in Table 5.  

 

Table 5. Final matrix 

D =

(

 
Ãδ(1)

Ãδ(2)
⋮

Ãδ(m))

   

 

Step V: Calculate the SVs SF(Aδ(i) ) (i = 1,𝑚) of final matrix given in Table 5 and rank the orders to find 

the best option. 

 

3.4. An Illustrative Example 

 

There is a three-shareholder company in which the rates of share are effective at the decisions to be made 

by shareholders and the sharing of the earnings. Let the shareholders be denoted by 𝐷1, 𝐷2, 𝐷3.  The 

shareholder 𝐷1 has 35% share rate, the shareholder 𝐷2 has 45% share rate and the shareholder 𝐷3 has 20% 

share rates. This company is planning to make an investment in an area where the alternatives are  

𝐴1: Development of small business, 𝐴2: Information Technology, 𝐴3: Tourism, 𝐴4: Transportation. They 

are taking into consideration the degree of risk, volume of income and investment recovery period when 

making an investment in these areas. Let the degree of risk, volume of income and investment recovery 

period be denoted by 𝐸1, 𝐸2, 𝐸3, respectively.  A prioritization relation through the criteria 𝐸𝑖  (𝑖 = 1,3) 
which fulfills 𝐸3 < 𝐸1 < 𝐸2 was determined by means of the shareholder’s opinions. Hence,suppose that 

𝔴 = (.3, .45, .25) denotes the vector of weight of the criteria {𝐸1, 𝐸2, 𝐸3}. To choose the optimum 

investment, the shareholder’s 𝐷1, 𝐷2, 𝐷3 with the DMs vector of weight  𝔡 = (.35, .45, .2) evaluate 4 

investment alternatives depend on these attribute considering the induced GSF E-aggregation operators.  

The constructed DeMs are shown in Table 6-Table 8 as follows: 

 

Table 6. DeM 𝐷1 

 E1 E2 E3 

A1 (.6, .8, .2) (.4, .3, .7) (.2, .7, .4) 

A2 (.55, .2, .8) (.8, .75, .65) (.9, .8, .2) 

A3 (.7, .4, .4) (.55, .2, .45) (.5, .7, .8) 

A4 (.35, .6, .5) (.7, .8, .55)  (.8, .6, .5) 

 

Table 7. DeM 𝐷2 

 E1 E2 E3 

A1 (.85, .7, .8) (.4, .75, .8)  (.6, .8, .5) 

A2 (.3, .4, .4) (.8, .2, .45) (.5, .6, .8) 

A3 (.9, . 8, .2) (.4, .8, .7) (.8, .7, .4) 

A4 (.75, .3, .5) (.8, .5, .45) (.5, .6, .8) 

 

Table 8. DeM 𝐷3 

 E1 E2 E3 

A1 (.75, .4, .5) (.8, .8, .45) (.8, .6, .8) 

A2 (.9, . 6, . 4) (.4, .6, .9) (.2, .7, .4) 

A3 (.55, .5, .8) (.8, .75, .85) (.6, .8, .2) 

A4 (.75, .4, .8) (.4, .8, .45) (.8, .6, .6) 
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Step I: Use the GSEOWA operator to merge the DeMs D1, D2, D3 with the vector of weight  

𝔴 = (.3, .45, .25) to get the Table 9 which is the aggregated values. 

 

Table 9. Aggregated values 

 F4×1
1  F4×1

2  F4×1
3  

 E1 E2 E3 

A1 (.4396, .5141, .4299)  (.6436, .7473, .7196)  (.7861, .6162, .5431) 

A2 (.7841, .5376, .5345)  (.638. .3287, .5093) (.6305, .6243, .6000) 

A3 (.5914, .3442, .5093)  (.733. .7748, .4299)  (.6962, .6819, .6151) 

A4 (.6606, .6874, .5221)  (.7309, .4525, .5431)  (.6515, .6162, .5826)  

 

Step II: Calculate the scores of all attributes of all alternatives using the function SF(G) =
3μ2−2ι2−ν2

3
 

where G is an GSFN to get the Table 1.  

 

Table 10. Scores of attribute of alternatives 

 E1 E2 E3 

A1 .04454 -.1307 .2665 

A2 .3269 .2486 .0177 

A3 .1844 .0755 .0486 

A4 .0304 .2994 .0582 

 

Step III: Order the values of Table 9 basing on the score analysis given in Table 10 to get the Table 11. 

 

Table 11. Reordered aggregated values 

 F4×1
1  F4×1

2  F4×1
3  

 E1 E2 E3 

Aδ(1) (.7861, .6162, .5431) (.4396, .5141, .4299)  (.6436, .7473, .7196)  

Aδ(2) (.7841, .5376, .5345)  (.638, .3287, .5093)  (.6305, .6243, .6000) 

Aδ(3) (.5914, .3442, .5093)  (.733, .7748, .4299)  (.6962, .6819, .6151)  

Aδ(4) (.7309, .4525, .5431) (.6515, .6162, .5826) (.6606, .6874, .5221) 

 

Step IV: Apply the DM's vector of weight 𝔡 = (.35, .45, .2) to get the Table 12 which is the final matrix.  

 

Table 12. Final matrix 

D =
Ãδ(1)

Ãδ(2)

Ãδ(3)

Ãδ(4)

(
(.6532,.6014,.5306 )
(.6987,.4584,.5396 )
(.6816,.5649,.4989 )
(.6843,.5684,.5531 )

)  

 

Step V: Calculate the SVs SF(Ãδ(i)) (i = 1,2,3,4) of final matrix given in Table 12 and rank the orders wrt 

the SVs: SF(Ãδ(1)) =  .0917, SF(Ãδ(2)) =  .251. SF(Ãδ(3)) =  .1688, F(Ãδ(4)) = .151. 

 

A2 is choosable for this problem since the SV of A2 is the highest. 

In the following, we check the validity of the obtained result by using GSEHWA operator.  

 

Step I: Use the GSEHWA operator on all DeM D1, D2, D3 with the vector of weight  

𝔴 = (.3, .45, .25) to get the Table 13 which is the aggregated values. 
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Table 13. Aggregated values under GSEHWA 

 F4×1
1  F4×1

2  F4×1
3  

 E1 E2 E3 

A1 (.4512, .4481, .4463)  (.6302, .7337, .7254) (.8008, .6264, .5019) 

A2 (.7948, .5421, .5487) (.6853, .2751, .4726) (.6258, .6017, .6333) 

A3 (.6015, .2857, .4726)  (.7104, .7696, .4463)  (.7301, .6737, .6527) 

A4 (.6755, .6922, .5076)  (.7605, .4353, .5019) (.6301, .6264, .5418) 

 

Step II: Calculate the scores of all attribute of all alternatives using the function SF(G) =
3μ2−2ι2−ν2

3
 where 

G is an GSFN to get the Table 14.  

 

Table 14. Scores of all attribute of all alternatives 

 E1 E2 E3 

A1 .0033  -.1371  .2957 

A2 .3354  .3448  .0166 

A3 .2330  .0434  .0884 

A4 .0510  .3681  .0375 

 

Step III: Order the values of Table 13 basing on the above score analysis given in Table 14 to get the 

Table 15. 

 

Table 15. Reordered aggregated values 

 F4×1
1  F4×1

2  F4×1
3  

 E1 E2 E3 

Aδ(1) (.8008, .6264, .5019) (.4512, .4481, .4463) (.6302, .7337, .7254) 

Aδ(2) (.6853, .2751, .4726) (.7948, .5421, .5487) (.6258, .6017, .6333) 

Aδ(3) (.6015, .2857, .4726) (.7301, .6737, .6530) (.7104, .7696, .4463) 

Aδ(4) (.7605, .4353, .5019) (.6755, .6922, .5076) (.6301, .6264, .5418) 

 

Step IV: Apply the DM's vector of weight 𝔡 = (.35, .45, .2) to get the Table 16 which is the final matrix.  

 

Table 16. Final matrix 

D =
Ãδ(1)

Ãδ(2)

Ãδ(3)

Ãδ(4)

(
(.6332,.5982,.5685)
(.7212,.4079,.5279)
(.682..5297,.4913)
(.7106,.5507,.5116)

)  

 

Step V: Calculate the SVs SF(Ãδ(i)) (i = 1,2,3,4) of final matrix given in Table 16 and rank the orders wrt 

the SVs: SF(Ãδ(1)) =  .0546, SF(Ãδ(2)) = .3163, SF(Ãδ(3)) = .1975, SF(Ãδ(4)) = .2155. 

 

As obtained same in the above technique, A2 is choosable for this problem since the SV of A2 is the 

highest. 

 

4. RESULTS AND DISCUSSION  

 

In this part, we give an analysis to compare the reliability and effectiveness of the proposed technique to 

merge the GSF information. Güner and Aygün [17] proposed the GSF E-aggregation operators to merge 

the GSF information. Now, we present a comparison between the presented and novel GSF E-aggregation 

operators.  Using the given data in the above decision-making problem, aggregated values under all defined 
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E-aggregation operators GSEWA, GSEWG, GSEOWA, GSEOWG, GSEHWA and GSEHWG have been 

shown in the Table 17. 

 

Table 17. Aggregated values under all aggregation operators 

 GSEWA  GSEWG  GSEOWA  GSEOWG  GSEHWA  GSEHWG 

A1 

(.6312, 

.6308, 

.5680) 

(.991. 

.6308, 

.05263) 

(.6532, 

.6014, 

.5306) 

(.9909, 

.5903, 

.3054) 

(.6332, 

.5982, 

.5685) 

(.9914, 

.5561, 

.0505) 

A2 

(.6989, 

.4439, 

.5352) 

(.9893, 

.4439, 

.0619) 

(.6987, 

.4584, 

.5396) 

(.9893, 

.4439, 

.0619) 

(.7212, 

.4079, 

.5279) 

(.9898, 

.4079, 

.0583) 

A3 

(.6837, 

.5685, 

.4900) 

(.992. 

.5685, 

.0589) 

(.6816, 

.5649, 

.4989) 

(.9918, 

.5506, 

.0571) 

(.682. 

.5297, 

.4913) 

(.9924, 

.5124, 

.0525) 

A4 

(.6932, 

.5572, 

.5432) 

(.9922, 

.5572, 

.0319) 

(.6843, 

.5684, 

.5531) 

(.9923, 

.5653, 

.0317) 

(.7106, 

.5507, 

.5116) 

(.9927, 

.5626, 

.0317) 

 

The scores of the aggregated values under all aggregation operators obtained in Table 17 are shown in 

Table 18.  

 

Table 18. SVs 

 GSEWA  GSEWG  GSEOWA  GSEOWG  GSEHWA  GSEHWG 

A1 .03 .7159 .0917 .7184 .0546 .7758 

A2 .26 .8460 .2510 .8460 .3163 .8676 

A3 .1719 .7674 .1688 .7805 .1975 .8088 

A4 .1752 .7772 .1510 .7714 .2155 .7742 

 

The demonstration of the ranking results observed in Table 18 are shown in Table 19.   

 

Table 19. Ranking orders 

Aggregation 

operators 

Ranking 

GSEWA [12] A1 < 𝐴3 < 𝐴4 < 𝐴2 

GSEWG [12] A1 < 𝐴3 < 𝐴4 < 𝐴2 

GSEOWA A1 < 𝐴4 < 𝐴3 < 𝐴2 

GSEOWG A1 < 𝐴4 < 𝐴3 < 𝐴2 

GSEHWA A1 < 𝐴3 < 𝐴4 < 𝐴2 

GSEHWG A4 < 𝐴1 < 𝐴3 < 𝐴2 

 

As seen in Table 19, the best alternative is 𝐴2 under all E-aggregation operators. That is, transportation is 

the best investment area for the company. Therefore, it has been deduced from following results stated in 

the Table 19 that the proposed decision-making method can be suitable to solve the MCGDM problem. 

 

5. CONCLUSION 

 

The theory of soft set (SS), suggested by Molodtsov [22], is another idea for an extension of the FS theory 

to manage uncertainties by parameterization. This theory has attracted many authors since it has a wide 

range of applications in different fields of science and allows it to hybridize with mathematical models and 

also different set theories such as fuzzy soft set (FSS) [23], intuitionistic fuzzy soft set (IFSS) [24], 

Phythogerean fuzzy soft set (PyFSS) [25], picture fuzzy soft set (PFSS) [26], spherical fuzzy soft set (SFSS) 

[27], T-spherical fuzzy soft set (T-SFSS) [28]. All these mentioned set theories are highly proficient and 

skilled to carry ambiguous information, however their abilities are limited to handling one-dimensional 



410  Elif GUNER, Halis AYGUN/ GU J Sci, 37(1): 393-413 (2024) 

 
 

data. A lot of complex MCDM problems comprise two-dimensional data but the existing MCDM strategies 

are incompetent to handle the two-dimensional information. To overcome such phenomena, one more 

extension of the FS theory, in literature, has been a complex fuzzy set (CFS) (given in [28]) where the 

MemD of an element is in the complex plane. This theory has provided a mathematical framework for 

describing membership in a set in terms of a complex number, so containing of phase and amplitude terms. 

The phase term is the pivotal part of the CFS that makes it the sole tool to capture both sides of the two-

dimensional information at that time. With the similar consideration on MemD of an element to a set as 

explained for fuzzy set theory extensions, some generalizations of CFSs have been initiated such as 

complex FS [29], complex IFS [30], complex PyFS [31], complex PFS [32], complex SFS [33], complex 

T-SFS [34] with their soft combinations such as complex IFSS [35], complex PyFSS [36], complex PFSS 

[37], complex SFSS [38] and complex T-SFSS [39]. In literature, notable MCGDM methods have been 

constructed by considering the information taken above set theories. Especially, in recent studies, most 

researchers have worked on MCGDM approaches on complex spherical fuzzy (soft) sets. Akram et al. [33, 

40] presented the VIKOR method for the complex spherical fuzzy environment and complex spherical 

fuzzy soft environment and applied these methods to the field of business to rank the objectives of an 

advertisement on Facebook and selection of firm for the Saudi oil refinery project in Pakistan, respectively. 

Then, Akram et al. [41] established the ELECTRE I method by using complex spherical fuzzy information 

and solved the selection of the best network monitoring software for military purposes. Also, Aydoğdu et 

al. [42] proposed the TOPSIS method based on entropy for complex spherical fuzzy data. Besides these 

MCGDM approaches, in literature, there are some different techniques based on similarity measure [43], 

dissimilarity measure [44], correlation measure [45], divergence measure [46], and knowledge measure 

[47] to solve MCGDM problems.  Considering these detailed explanations and the lack of studies related 

to MCGDM methods in GSF environment, we propose to develop some traditional MCGDM methods such 

as VIKOR, ELECTRE, COPRAS, VIKOR, etc. based on the entropy or the mentioned measures in this 

environment. Furthermore, one can introduce the notions of complex GSFSs and GSF soft sets which also 

will allow us to explore the different kinds of MCGDM techniques. 
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