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Abstract – Transmuted power function distribution is generated using the quadratic rank 

transmutation method based on the mixture of the distributions of two order statistics. The distributions 

generating via Quadratic rank transmutation map are more flexible than the baseline ones since they 

have a potential to model various dataset. In this study, we provide some distributional properties and 

statistical inferences of transmuted power function distribution. We describe several previously 

unexamined properties, such as density shape, hazard shape, and the transmuted power function 

distribution measures. We also tackle the problem of point estimation for transmuted power function 

distribution. In this regard, maximum likelihood, least-squares, weighted least-squares, Anderson-

Darling method, and Crámer–Von-Mises method are considered to estimate the two parameters of 

transmuted power function distribution. A comprehensive Monte Carlo simulation study is performed 

to compare these methods via bias and mean-squared errors. 

Keywords – Transmuted power function distribution, power function distribution, point estimation, risk measures, Monte Carlo 

simulation 

Mathematics Subject Classification (2020) − 62F10, 62P05 

1. Introduction 

Many authors very commonly discuss the point estimation and various characterization of the statistical 

distributions. Describing the distributions’ statistical properties in detail is very significant to illustrate the 

usefulness of the distributions. Another critical point is the parameter estimation problem for the statistical 

distributions. It is well-known that the maximum likelihood method is very popular for point estimation. 

However, many researchers studied various alternative methods to the maximum likelihood method. In the last 

decade, there are many papers on the characterization and estimation of the distributions. Mahmoud and 

Mandouh [1] described some distributional properties of transmuted Fréchet distribution. Hamedani [2] 

examined some characteristics of transmuted complementary Weibull geometric distribution. Ahmad et al. [3] 

provided the characterization of transmuted Kumaraswamy distribution. Ahmad et al. [4] focused on a number 

of statistical properties and point estimation for transmuted Rayleigh distribution. Bhatti et al. [5] studied a 

couple of characterizations of transmuted Dagum distribution. Bhatti et al. [6] discussed several distributional 

properties of transmuted modified Burr II distribution. Bhatti et al. [7] examined some statistical properties of 

the transmuted geometric-quadratic hazard rate distribution. Tanış et al. [8] considered a comparison of the 

approximate Bayes and maximum likelihood estimation methods for log-Dagum distribution. Tanış and 
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Saraçoğlu [9] compared the methods of estimation for log-Kumaraswamy distribution. Hanif et al. [10] 

discussed several estimation methods for Rician distribution. Anas et al. [11] performed partial characterisation 

of extreme value distribution. Hanif et al. [12] tackled the estimation of parameters’ discrete inverse Weibull 

distribution using ranked set sampling. Hanif et al. [13] focused on the estimation of parameters’ generalized 

exponential distribution. Karakaya and Tanış [14] compared the estimation methods for Akash distribution. 

Tanış and Saraçoğlu [15] provided a comparison of the methods of estimation for transmuted record type 

Weibull distribution. Karakaya and Tanış [16] discussed the estimation problem of Xgamma-Weibull 

distribution. Tanış et al. [17] described the estimation methods for transmuted lower record type Fréchet 

distribution.  

The purpose of this paper is to examine some distributional properties and compare five estimation 

methods such as maximum likelihood, least-squares, weighted least-squares, Anderson-Darling, and Crámer–

Von-Mises for transmuted power function distribution [18]. The paper is organized as follows: In Section 2, 

the transmuted power function distribution and distributional properties are described, such as density and 

hazard shapes with theorems. Then, some risk measures are defined for transmuted power function distribution 

in Section 3. Section 4 presents five methods of estimation for point estimation. Section 5 provides an extensive 

Monte Carlo simulation study to compare these estimation methods. Finally, the conclusions are presented in 

Section 6.  

2. Transmuted Power Function Distribution  

Transmuted power function distribution is proposed by Shahzad and Asghar [18] via a quadratic transmutation 

map (QRTM). The relationship between baseline distribution and transmuted distribution obtained by using 

QRTM are summarized by 

𝐹(𝑥) = 𝐺(𝑥)[1 + 𝜆(1 − 𝐺(𝑥))] (1) 

where |𝜆| ≤ 1, 𝐺(𝑥) denotes the cumulative distribution function (CDF) of baseline distribution, and 𝐹(𝑥) 

refers to the CDF of transmuted distribution newly generated by the QTRM. Consider the baseline distribution 

power function distribution with CDF 𝐺(𝑥; 𝛽) = 𝑥𝛽 and the probability density function (PDF) 𝑔(𝑥; 𝛽) =

𝛽𝑥𝛽−1 then, the PDF and CDF of transmuted power function distribution are as follows: 

𝐹(𝑥; 𝛽, 𝜆) = 𝑥𝛽{1 + 𝜆(1 − 𝑥𝛽)} (2)

and 

𝑓(𝑥; 𝛽, 𝜆) = 𝛽𝑥𝛽−1{1 + 𝜆 − 2𝜆𝑥𝛽} (3) 

respectively, where 𝛽 > 0 is a shape parameter and −1 ≤ 𝜆 ≤ 1 [18]. Transmuted power function distribution 

can model the datasets in many fields, such as engineering, economics, hydrology, and social and behavioural 

sciences. Some statistical properties include mean, mode, median, variance, quantile function, reliability 

function, hazard function, order statistics, and generalized TL-moments with its special cases L-, TL-, LL LH-

moments are described for transmuted power function distribution in [18]. In this paper, transmuted power 

function distribution is briefly denoted by 𝑇𝑃𝐹(𝛽, 𝜆). Recently, many papers have produced about power 

function distribution in the literature. Some of these studies are listed as follows: Akhter [19] studied the 

estimation methods for power function distribution. Tahir et al. [20] proposed a new statistical distribution 

called Weibull-power function distribution. Okorie et al. [21] introduced the modified power function 

distribution. Bursa and Özel [22] provided a new extension of power function distribution, called 

exponentiated Kumaraswamy-power function distribution. Hassan and Salwa [23] proposed a new statistical 

distribution called exponentiated Weibull-power function distribution. Haq et al. [24] suggested the transmuted 

Weibull power function distribution. The cubic transmuted power function distribution was introduced by [25]. 

Arshad et al. [26] suggested the exponentiated power function distribution. Jabenn and Zaka [27] tackled the 

problem of percentile estimation for power function distribution.  
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2.1. Density and Hazard Shapes  

In this subsection, we discuss the possible shapes of density and hazard for 𝑇𝑃𝐹(𝛽, 𝜆) distribution with some 

theorems. 

Theorem 2.1. PDF of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is unimodal for 𝛽 > 2. 

PROOF. 𝑇1(𝑥) and 𝑇2(𝑥) denote the first and second derivatives of log(𝑓𝑇𝑃𝐹(𝑥; 𝛽, 𝜆)), respectively. They are 

defined as follows: 

𝑇1(𝑥) =
𝑑

𝑑𝑥
log(𝑓𝑇𝑃𝐹(𝑥; 𝛽, 𝜆)) =

2(2𝛽 − 1)𝜆𝑥𝛽 − (1 + 𝜆)(𝛽 − 1)

𝑥(2𝜆𝑥𝛽 − 𝜆 − 1)
 

and 

𝑇2(𝑥) =
𝑑2

𝑑𝑥2
log(𝑓𝑇𝑃𝐹(𝑥; 𝛽, 𝜆)) =

−8𝜆2𝑥2𝛽 (𝛽 −
1
2) − (1 + 𝜆)2(𝛽 − 1)

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
−

2𝜆(1 + 𝜆)(𝛽 − 1)(𝛽 − 2)𝑥𝛽

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
 

It is observed that 𝑇2(𝑥) < 0 for 𝛽 > 2. Then, the density of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is log-concave and 

unimodal for 𝛽 > 2.             

                  □ 

Figure 1 illustrates the possible shapes of the density of 𝑇𝑃𝐹(𝛽, 𝜆) distribution. 

 
Fig. 1. The density plots of 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

Theorem 2.2. The hazard function (HF) of 𝑇𝑃𝐹(𝛽, 𝜆) distribution increases for 𝛽 > 2. 

PROOF.  

𝜂(𝑥) = −
𝑓′(𝑥)

𝑓(𝑥)
=

2(1 − 2𝛽)𝜆𝑥𝛽 + (1 + 𝜆)(𝛽 − 1)

𝑥(2𝜆𝑥𝛽 − 𝜆 − 1)
 

and the first derivative of 𝜂(𝑥) is defined by 

𝜂′(𝑥) =
𝑑

𝑑𝑥
𝜂(𝑥) =

8 (𝛽 −
1
2) 𝜆2𝑥2𝛽 + (1 + 𝜆)2(𝛽 − 1)

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
+

2𝜆(1 + 𝜆)(𝛽 − 1)(𝛽 − 2)𝑥𝛽

𝑥2(2𝜆𝑥𝛽 − 𝜆 − 1)2
 

We notice that 𝜂(𝑥) > 0 for 𝛽 > 2, and it can be concluded that the HF of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is increasing 

for 𝛽 > 2 according to Glaser [28].           □ 

Figure 2 shows that the possible shapes of HF of 𝑇𝑃𝐹(𝛽, 𝜆) distribution. 
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Fig. 2. The hazard plots of 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

From Figure 2, we observe that the shape of HF tends to increase. Shahzad and Asghar [18] mention that the 

𝑇𝑃𝐹(𝛽, 𝜆) distribution is more flexible than power function distribution since it has an increasing and bathtub-

shaped hazard rate. 

3. Risk Measures 

In this section, we discuss the theoretical and computational aspects of some essential risk measures such as 

value at risk (VaR), tail value at risk (TVaR), tail variance (TV), and tail variance premium (TVP) for the 

𝑇𝑃𝐹(𝛽, 𝜆) distribution. 

3.1. VaR Measure 

The VaR is a well-known measure of the risk of loss for investments. It is also called quantile risk measure. 

Firms and regulators generally use the VaR in the financial sector to determine the number of assets required 

to cover potential losses. The VaR of a random variable 𝑋 is the 𝑞th quantile of its CDF, denoted by 𝑉𝑎𝑅𝑞, and 

it is defined by 𝑉𝑎𝑅𝑞 = 𝑄(𝑞) [29,30]. 

Let 𝑋 be a random variable from 𝑇𝑃𝐹(𝛽, 𝜆) distribution, then its VaR can be obtained by 

𝑉𝑎𝑅𝑞 = [
𝜆 + 1 − √(1 + 𝜆)2 − 4𝜆𝑞

2𝜆
]

1
𝛽

(4) 

where 𝑞 ∈ (0,1).  

3.2. TVaR Measure 

TVaR, also known as conditional tail expectation, is a significant risk measure. It measures the expected value 

of the loss given that an event outside a given probability level has occurred. The TVaR of 𝑇𝑃𝐹(𝛽, 𝜆) 

distribution is  

𝑇𝑉𝑎𝑅𝑞 =
1

1 − 𝑞
∫ 𝑥𝑓(𝑥)

1

𝑉𝑎𝑅𝑞

𝑑𝑥 =
1

1 − 𝑞
[
(1 + 𝜆)𝛽(1 − 𝑉𝑎𝑅𝑞

𝛽+1)

𝛽 + 1
+

2𝜆𝛽(𝑉𝑎𝑅𝑞
𝛽+1 − 1)

2𝛽 + 1
] (5) 

where 𝑉𝑎𝑅𝑞 is defined in (4). 
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3.3. TV Measure 

The TV is one of the most significant risk-quantifying measures, which pay attention to the tail variance 

beyond the VaR. TV was suggested by Landsman [31]. The TV of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is given by 

𝑇𝑉𝑞(𝑋) = 𝐸(𝑋2 | 𝑋 > 𝑥𝑞) − {𝑇𝑉𝑎𝑅𝑞}
2
  

 
=

1

1 − 𝑞
∫ 𝑥2𝑓(𝑥)

1

𝑉𝑎𝑅𝑞

𝑑𝑥 − {𝑇𝑉𝑎𝑅𝑞}
2
 (6) 

 
=

1

1 − 𝑞
[
(1 + 𝜆)(1 − 𝑉𝑎𝑅𝑞

𝛽+2)

𝛽 + 2
+

𝜆𝛽(𝑉𝑎𝑅𝑞
2𝛽+2 − 1)

𝛽 + 1
] − {𝑇𝑉𝑎𝑅𝑞}

2
 

 

where 𝑇𝑉𝑎𝑅𝑞 is defined in (5). 

3.4. TVP Measure 

The TVP is one of the most used risk measures, which essentially plays a role in insurance sciences. The TVP 

of 𝑇𝑃𝐹(𝛽, 𝜆) distribution is given as follows: 

𝑇𝑉𝑃𝑞 = 𝑇𝑉𝑎𝑅𝑞 + 𝜇𝑇𝑉𝑞 (7) 

where 0 < 𝜇 < 1, 𝑇𝑉𝑎𝑅𝑞, and 𝑇𝑉𝑞 are defined in (5) and (6), respectively. Tables 1-2 provide the VaR, TVaR, 

TV, and TVP of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution for some parameters. 

Table 1. VaR, TVaR, TV, and TVP of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

Parameters 𝝁 Significance Level VaR TVaR TV TVP 

𝛽 = 0.5, 𝜆 = 0.9 0.5 

0.7 0.226137 0.460796 0.035095 0.478343 

0.75 0.276244 0.502876 0.031448 0.5186 

0.8 0.337432 0.552153 0.027091 0.565698 

0.85 0.41415 0.61146 0.021889 0.622404 

0.9 0.514985 0.686193 0.015657 0.694022 

0.95 0.661611 0.789652 0.008135 0.79372 

0.99 0.876849 0.930279 0.001204 0.930881 

𝛽 = 2, 𝜆 = −0.5 0.3 

0.7 0.885733 0.945493 0.001083 0.945818 

0.75 0.907125 0.955287 0.000717 0.955502 

0.8 0.927441 0.964767 0.000438 0.964898 

0.85 0.946797 0.973958 0.000236 0.974028 

0.9 0.965289 0.982881 0.0001 0.982911 

0.95 0.982999 0.991556 2.41×10-5  0.991563 

0.99 0.996654 0.998329 9.33×10-7  0.998329 

𝛽 = 5, 𝜆 = 0.1 0.7 

0.7 0.92527 0.964136 0.000463 0.96446 

0.75 0.939076 0.970518 0.000308 0.970733 

0.8 0.952255 0.976718 0.00019 0.976851 

0.85 0.96488 0.982754 0.000103 0.982826 

0.9 0.977013 0.988638 4.4×10-5  0.988669 

0.95 0.988704 0.994383 1.06×10-5  0.994391 

0.99 0.997771 0.998886 4.14×10-7  0.998887 

𝛽 = 0.7, 𝜆 = 0.7 0.6 

0.7 0.398807 0.633135 0.026904 0.649277 

0.75 0.458578 0.674146 0.022134 0.687427 

0.8 0.526709 0.719719 0.017187 0.730031 

0.85 0.605911 0.771214 0.012135 0.778495 

0.9 0.700959 0.830911 0.007135 0.835192 

0.95 0.821919 0.903249 0.002592 0.904804 

0.99 0.955898 0.977402 0.000162 0.977499 
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Table 2. VaR, TVaR, TV, and TVP of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution for selected parameters 

Parameters 𝝁 Significance Level VaR TVaR TV TVP 

𝛽 = 1, 𝜆 = −0.9 0.4 

0.7 0.82811 0.916594 0.002456 0.917576 

0.75 0.859004 0.931184 0.001654 0.931845 

0.8 0.888889 0.945473 0.001028 0.945884 

0.85 0.917856 0.959482 0.000562 0.959707 

0.9 0.945986 0.97323 0.000243 0.973327 

0.95 0.973348 0.986731 5.92×10-5  0.986754 

0.99 0.994724 0.997364 2.32×10-6  0.997365 

𝛽 = 15, 𝜆 = 0.95 0.9 

0.7 0.950062 0.970539 0.000164 0.970687 

0.75 0.956434 0.973997 0.000125 0.97411 

0.8 0.96285 0.977589 9.05×10-5  0.97767 

0.85 0.96947 0.981407 6.12×10-5  0.981462 

0.9 0.976577 0.985628 3.62×10-5  0.98566 

0.95 0.984855 0.990692 1.55×10-5  0.990706 

0.99 0.994485 0.996725 2.24×10-6  0.996727 

𝛽 = 0.3, 𝜆 = 0.05 0.1 

0.7 0.289297 0.592721 0.041935 0.596915 

0.75 0.36717 0.645842 0.03329 0.649171 

0.8 0.459168 0.70432 0.024338 0.706754 

0.85 0.566811 0.768554 0.015625 0.770116 

0.9 0.691699 0.838956 0.007918 0.839747 

0.95 0.835509 0.915956 0.002255 0.916181 

0.99 0.96536 0.982606 10−4  0.982616 

𝛽 = 3, 𝜆 = 0.5 0.8 

0.7 0.833017 0.913352 0.002269 0.915167 

0.75 0.859061 0.926815 0.001624 0.928114 

0.8 0.885264 0.940485 0.001081 0.941349 

0.85 0.911932 0.954465 0.00064 0.954977 

0.9 0.93947 0.968894 0.000304 0.969136 

0.95 0.968481 0.983968 8.26×10-5  0.984034 

0.99 0.993418 0.996695 3.61×10-6  0.996698 

4. Point Estimation 

In this section, we consider five estimation methods to estimate the parameters of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution 

including maximum likelihood, least squares, weighted least squares, Anderson-Darling method, and Cramér-

Von Mises method. 
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Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 be a random sample from the 𝑇𝑃𝐹(𝛽, 𝜆) distribution and 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛) 

denote the corresponding order statistics. Further, 𝑥(𝑖) refers to the observed value of 𝑋(𝑖). In this regard, the 

log-likelihood function of the 𝑇𝑃𝐹(𝛽, 𝜆) distribution is 

ℓ(𝜃) = 𝑛 log(𝛽) + (𝛽 − 1) ∑ log(1 + 𝑥𝑖
2)

𝑛

𝑖=1

+ ∑ log (1 + 𝜆 − 2𝜆𝑥𝑖
𝛽

)

𝑛

𝑖=1

(8) 

where 𝜃 = (𝛽, 𝜆) is a parameter vector. Then, the maximum likelihood estimator (MLE) of 𝜃 is given as 

follows: 

𝜃𝑀𝐿𝐸 = argmax
𝜃

{ℓ(𝜃)} (9) 

Let us define the following four functions, which are used to obtain the different type of estimates: 

𝑄𝐿𝑆(𝜃) = ∑ ([𝑥(𝑖)
𝛽{1 + 𝜆(1 − 𝑥(𝑖)

𝛽)}] −
𝑖

𝑛 + 1
)

2𝑛

𝑖=1

, 

𝑄𝑊𝐿𝑆(𝜃) = ∑
(𝑛 + 2)(𝑛 + 1)2

𝑖(𝑛 − 𝑖 + 1)
([𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}] −

𝑖

𝑛 + 1
)

2𝑛

𝑖=1

, 

𝑄𝐶𝑣𝑀(𝜃) =
1

12𝑛
+ ∑ ([𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}] −

2𝑖 − 1

2𝑛
)

2𝑛

𝑖=1

, 

and 

𝑄𝐴𝐷(𝜃) = −𝑛 −
1

𝑛
∑ ((2𝑖 − 1) log[𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}])

𝑛

𝑖=1

+
1

𝑛
∑(log(1 − [𝑥(𝑖)

𝛽{1 + 𝜆(1 − 𝑥(𝑖)
𝛽)}]))

𝑛

𝑖=1

 

The least squares estimators (LSEs), weighted least squares estimators (WLSEs), Cramér–von Mises 

estimators (CvMEs), and Anderson-Darling estimators (ADEs) of the parameters 𝜃 = (𝛽, 𝜆) are given, 

respectively, by 

𝜃𝐿𝑆𝐸 = argmin
𝜃

{𝑄𝐿𝑆(𝜃)} (10) 

𝜃𝑊𝐿𝑆𝐸 = argmin
𝜃

{𝑄𝑊𝐿𝑆(𝜃)} (11) 

𝜃𝐶𝑣𝑀𝐸 = argmin
𝜃

{𝑄𝐶𝑣𝑀(𝜃)} (12) 

𝜃𝐴𝐷𝐸 = argmin
𝜃

{𝑄𝐴𝐷(𝜃)} (13) 

The estimators given in (9)-(13) can be obtained by optim () function in R with the BFGS algorithm. 

5. Simulation Study 

In this section, we perform a comprehensive Monte Carlo simulation study to compare the performances of 

MLEs, LSEs, WLSEs, CvMEs, and ADEs of 𝛽 and 𝜆 according to biases and MSEs. The simulation study is 

performed based on 1000 repetitions. We consider the sample size 50, 100, 250, 500, 1000, and four-parameter 

settings as follows: 

(𝛽 = 2, 𝜆 = 0.5), (𝛽 = 0.9, 𝜆 = −0.5), (𝛽 = 1, 𝜆 = 0.7), (𝛽 = 1.5, 𝜆 = −0.7)  

BFGS algorithm is performed to get the five estimates given in (9)-(13). Tables 3 and 4 provide the biases and 

MSEs of five estimators for selected parameters and sample sizes. 
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Table 3. Average biases of MLEs, LSEs, WLSEs, ADEs, and CvMEs of 𝛽 and 𝜆 parameters 

  �̂� �̂� 

Parameters 𝒏 MLE LSE WLSE ADE CvME MLE LSE WLSE ADE CvME 

 50 0.0777 -0.0300 -0.0071 0.0178 0.0650 -0.0592 -0.1386 -0.1235 -0.1015 -0.0573 

 100 0.0518 0.0068 0.0256 0.0317 0.0550 -0.0338 -0.0655 -0.0515 -0.0456 -0.0234 

𝛽 = 2, 𝜆 = 0.5 250 0.0388 0.0189 0.0273 0.0293 0.0370 -0.0245 -0.0388 -0.0334 -0.0316 -0.0234 

 500 0.0332 0.0217 0.0274 0.0270 0.0305 -0.0136 -0.0221 -0.0174 -0.0177 -0.0145 

 1000 0.0167 0.0088 0.0125 0.0123 0.0132 -0.0160 -0.0216 -0.0188 -0.0189 -0.0179 

 50 0.1899 0.0331 0.1018 0.0337 0.0205 0.1487 -0.1357 -0.0043 -0.1118 -0.1762 

 100 0.1330 0.0128 0.0317 0.0335 0.0027 0.0853 -0.1309 -0.0827 -0.0789 -0.1574 

𝛽 = 0.9, 𝜆 = −0.5 250 0.0688 -0.0191 0.0354 0.0051 -0.0255 0.0321 -0.1272 -0.0313 -0.0770 -0.1418 

 500 0.0496 -0.0152 0.0171 0.0138 -0.0207 0.0227 -0.0959 -0.0377 -0.0430 -0.1066 

 1000 0.0222 -00022 0.0040 0.0248 -0.0032 -0.0043 -00576 -0.0410 -0.0092 -0.0603 

 50 0.0234 -0.0179 -0.0082 -0.0003 0.0237 -0.1228 -0.1806 -0.1685 -0.1531 -0.1043 

 100 0.0215 0.0006 0.0092 0.0098 0.0197 -0.0652 -0.0958 -0.0818 -0.0820 -0.0608 

𝛽 = 1, 𝜆 = 0.7 250 0.0226 0.0156 0.0185 0.0185 0.0229 -0.0238 -0.0337 -0.0302 -0.0293 -0.0199 

 500 0.0134 0.0091 0.0111 0.0108 0.0128 -0.0210 -0.0269 -0.0237 -0.0244 -0.0201 

 1000 0.0094 0.0081 0.0090 0.0088 0.0099 -0.0137 -0.0157 -0.0142 -0.0146 -0.0123 

 50 0.3421 0.2711 0.2529 0.2517 0.2234 0.1521 0.0240 0.0402 0.0493 -0.0327 

 100 0.2050 0.1831 0.1782 0.1740 0.1507 0.0780 0.0069 0.0259 0.0278 -0.0303 

𝛽 = 1.5, 𝜆 = −0.7 250 0.1492 0.1341 0.1300 0.1271 0.1134 0.0590 0.0192 0.0281 0.0272 -0.0025 

 500 0.0923 0.1046 0.0884 0.0860 0.0908 0.0287 0.0204 0.0158 0.0141 0.0065 

 1000 0.0712 0.0796 0.0924 0.0684 0.0693 0.0268 0.0220 0.0372 0.0183 00122 

Table 4. Average MSEs of MLEs, LSEs, WLSEs, ADEs, and CvMEs of 𝛽 and 𝜆 parameters 

  �̂� �̂� 

Parameters 𝒏 MLE LSE WLSE ADE CvME MLE LSE WLSE ADE CvME 

 50 0.1403 0.1725 0.1581 0.1431 0.1751 0.1192 0.1655 0.1556 0.1347 0.1412 

 100 0.0752 0.0917 0.0794 0.0731 0.0899 0.0726 0.0837 0.0744 0.0670 0.0722 

𝛽 = 2, 𝜆 = 0.5 250 0.0276 0.0335 0.0321 0.0302 0.0341 0.0228 0.0286 0.0295 0.0266 0.0270 

 500 0.0144 0.0174 0.0149 0.0148 0.0178 0.0116 0.0142 0.0121 0.0121 0.0138 

 1000 0.0069 0.0085 0.0074 0.0074 0.0086 0.0056 0.0069 0.0060 0.0060 0.0067 

 50 0.1018 0.0563 0.0664 0.0506 0.0688 0.1655 0.1422 0.1289 0.1175 0.2011 

 100 0.0692 0.0400 0.0380 0.0372 0.0465 0.1110 0.1164 0.0960 0.0913 0.1454 

𝛽 = 0.9, 𝜆 = −0.5 250 0.0377 0.0273 0.0308 0.0254 0.0301 0.0768 0.0865 0.0730 0.0700 0.0982 

 500 0.0258 0.0210 0.0219 0.0215 0.0224 0.0551 0.0640 0.0571 0.0563 0.0700 

 1000 0.0147 0.0175 0.0149 0.0167 0.0185 0.0358 0.0460 0.0398 0.0387 0.0487 

 50 0.0274 0.0354 0.0308 0.0276 0.0349 0.0951 0.1450 0.1281 0.1093 0.1141 

 100 0.0129 0.0168 0.0135 0.0138 0.0172 0.0416 0.0629 0.0473 0.0513 0.0574 

𝛽 = 1, 𝜆 = 0.7 250 0.0053 0.0064 0.0060 0.0055 0.0067 0.0149 0.0204 0.0201 0.0161 0.0194 

 500 0.0025 0.0030 0.0026 0.0026 0.0031 0.0075 0.0097 0.0081 0.0080 0.0094 

 1000 0.0012 0.0016 0.0013 0.0013 0.0016 0.0036 0.0050 0.0040 0.0040 0.0049 

 50 0.2602 0.2566 0.2013 0.1731 0.2609 0.0762 0.0947 0.0582 0.0380 0.1220 

 100 0.1212 0.1695 0.1314 0.1156 0.1741 0.0524 0.0855 0.0544 0.0414 0.1001 

𝛽 = 1.5, 𝜆 = −0.7 250 0.0988 0.1104 0.0899 0.0838 0.1110 0.0504 0.0635 0.0454 0.0407 0.0681 

 500 0.0648 0.0850 0.0638 0.0612 0.0842 0.0388 0.0515 0.0363 0.0346 0.0531 

 1000 0.0481 0.0618 0.0624 0.0470 0.0604 0.0304 0.0392 0.0359 0.0285 0.0391 
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As a result of the simulation study, we observe that, with increasing sample sizes, the MSEs and biases decrease 

as expected. From Table 3 and 4, it has been general observed that the MLE has a smaller MSE compared to 

other estimators for both 𝛽 and 𝜆 parameters. However, there are some situations that ADE and CvME have a 

smaller bias than MLE. As a result, we recommend MLE for point estimation of 𝑇𝑃𝐹(𝛽, 𝜆) distribution. 

However, ADE and CvME can be good alternatives to MLE to estimate the parameters of 𝑇𝑃𝐹(𝛽, 𝜆) 

distribution. 

6. Conclusion 

In this study, 𝑇𝑃𝐹(𝛽, 𝜆) distribution proposed by Shahzad and Asghar [18] is studied in terms of some 

characteristic properties and statistical inferences. Some critical risk measures are discussed and numerically 

obtained for 𝑇𝑃𝐹(𝛽, 𝜆) distribution. We compare five estimators of parameters of 𝑇𝑃𝐹(𝛽, 𝜆) distribution, such 

as MLE, LSE, WSE, ADE, and CvME via Monte Carlo simulations. In the simulation study, it is seen that 

MLE is the best estimator among others according to MSE criteria. We recommend MLE to estimate the 

parameters of 𝑇𝑃𝐹(𝛽, 𝜆) distribution.  
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