

Volume 2 No 2 | May 2020, 83-90

Research Article

Chemical Composition of Essential Oil From Aerial Parts of Lactuca serriola L.

 Hüseyin Servi^{1*}
 ORCID: 0000-0002-4683-855X

 Ahmet Doğan²
 ORCID: 0000-0003-0603-5100

¹Department of Pharmaceutical Botany, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey. ²Department of Pharmaceutical Botany, Faculty of Pharmacy, Marmara University, Istanbul, Turkey

Submitted: April 3, 2020; Accepted: May 3, 2020

Abstract: The volatile oil of the aerial parts of *Lactuca serriola* L. was obtained by the hydro-distillation method for 3 hours with the Clevenger-type apparatus. The chemical composition of oil was determined by GC-MS analyses. Forty-three constituents were identified in oil (84.3%). Heneicosane (8.4%), (*E*)- β -ionone (6.5%), hexadecanoic acid (6.4%), hexahydrofarnesyl acetone (6.3%), tricosane (5.5%), heptacosane (5.5%), phytol (5.0%) and pentacosane (4.1%) were determined as main compounds in the oil. The oil has saturated *n*-alkane derivatives as a dominant group. To the best of our knowledge, this is the first report on the chemical composition of volatile of *L. serriola* from Turkey.

Keywords: Lactuca serriola; essential oils; n-alkane derivatives

Address of Correspondence: Hüseyin Servi –huseyin.servi@altinbas.edu.tr Tel: +90(212)7094528, Department of Pharmaceutical Botany, Faculty of Pharmacy, Altınbaş University, İncirli Caddesi No:11, 34440 Bakırköy, Istanbul, Turkey

1. Introduction

The genus *Lactuca* L. is annual, biennial, and perennial herbs and members of the Lactuceae tribe of the Asteraceae family. The genus has 113 species and is represented by 8 species in Turkey. *Lactuca serriola* L. (Prickly lettuce) is a biennial plant that grows grassy and rocky slopes, field margin, fallow and cultivated fields throughout Turkey (Davis, 1975). *L. serriola* is called as 'Yabani marul' or 'Eşek helvası' in Turkey. Prickly lettuce has been used as a traditional medicine in Turkey for a long time. For example, the decoction of the plant is used to treatment of liver ailments and stomach pain; the infusion of the plant is used to lowering cholesterol and against hemorrhoids; it is used as a sedative if the leaves are eaten raw (Tuzlacı, 2016). Also, *L. serriola* leaves are consumed as a fresh salad in Turkey (Dogan et al., 2004). The plant has milky latex, which contains 'lactucarium'. Lactucone, lactucin and lactucic acids are found in lactucarium. The lactucarium concentration is low in young plants and is high in flowering period. The lactucarium is used internally as a traditional medicine in the treatment of insomnia, anxiety, neuroses,

hyperactivity in children, dry coughs, whooping cough, rheumatic pain. Also, this milky latex is used as medicine due to anodyne, antispasmodic, digestive, diuretic, hypnotic, narcotic and sedative properties (Elsharkawy and Alshathly, 2013). L. serriola had sedative-hypnotic, antipyretic, antibacterial, analgesic, anti-inflammatory, antioxidant, anticancer and smooth muscle activities due to sesquiterpene lactones (e.g. lactucin, lactucone), triterpenoid saponin, phenols, vitamins, beta carotene, iron, flavonoids, and sesquiterpene esters (Balogun et al., 2017; Mojab et al., 2010). Balogun et al. (2017) reported that the aqueous and methanol extracts from the leaf of *L. serriola* had antipseudomonal activity (Balogun et al., 2017). Another study, it was found that L. serriola methanol extract possessed spasmogenic, spasmolytic, a bronchodilator, and vasorelaxant activities (Janbaz et al., 2013). The antioxidant and allelopathic activities of essential oil of L. serriola were previously studied. The main compounds of oil were isoshyobunone (64.2%), isocembrol (17.3%), and alloaromadendrene oxide-1 (7.3%). The oil showed strong antioxidant and allelopathic activities (Abd-ElGawad et al., 2019). Additionally, the anti-inflammatory activity of L. serriola essential oil was investigated. Sesquisabinene hydrate (15.1%), thunbergol (8.9%) and globulol (6.5%) were determined as the main compounds in the oil. The oil displayed good anti-inflammatory activity (Elsharkawy et al., 2014). The essential oil composition and anticancer activity of hexane and methanol extracts of aerial parts of *L*. serriola were studied. The main compounds of oil were α -pinene, limonene, germacrene D, trans- β -caryophyllene, caryophyllene oxide, and santolina triene. The cytotoxic activity of hexane and methanol extracts was evaluated against A549, HCT116, HepG2, and MCF7 cell lines. The methanol extract had strong activity against HepG2 and MCF7 cell lines. Also, lupeol, lupeol acetate, germincol, α-amyrin, β-amyrin, oleanane, and germanicen were isolated from methanol extract (Elsharkawy and Alshathly, 2013).

According to our literature survey, the essential oil composition of *L. serriola* showed differences rely on geographical regions. There is no report on the volatile oil composition of *L. serriola* in Turkey. The first purpose of this research was to obtain essential oil from aerial parts of *L. serriola*, and the second purpose was to determine the diversity in the essential oil composition of *L. serriola* and to show that essential oil differences are related to geographical regions.

2. Materials and Methods

2.1. Plant Materials

The aerial parts of *L. serriola* were collected in İkitelli-Başakşehir, Istanbul, Turkey on 23 July 2017 by Hüseyin Servi Ph.D. The plant was identified by Ahmet Doğan Ph.D. A herbarium specimen was deposited in the Marmara University Herbarium (Voucher no: MARE22155).

2.2. Volatile Oil Analyses

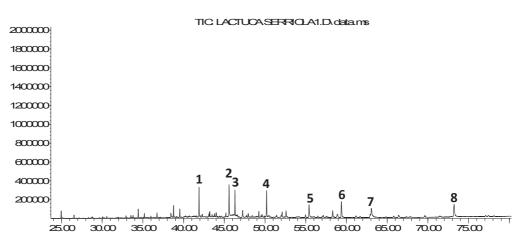
The volatile oil of the aerial part (290 g) of *L. serriola* was obtained by the Clevenger apparatus (3 h) with the hydrodistillation method. The oil was kept with *n*-hexane (1 mL).

aurum

2.3. Gas Chromatography-Mass Spectrometry Analysis

The oil ingredients were determined by GC-MS using an Agilent 5977 MSD system and operated in El mode. The volatile oil was injected (1 μ L) in splitless mode. MS transfer apparatus and injector temperatures were set at 250°C. In GC-MS analyses, the capillary column type was Innowax FSC (60 m x 0.25 mm, 0.25 μ m film thickness) and the carrier gas was helium with a flow rate of 1 mL/min. The oven temperature was arranged to 60°C for 10 minutes and increased to 220°C at 4°C/min, where the temperature kept stable for 10 minutes. Then, the temperature was increased to 240°C at 1°C/min. The conditions of the mass spectra were as following; it was saved at 70 eV. Then, in MS chromatograms, the relative percentages of the compounds that separated from the integration of the peaks were calculated.

2.4. Identification of Volatile Oil Components


The constituents were determined by comparison with GC-MS libraries (Wiley 8th Ed. and NIST 05) and their relative retention indices (RRI) obtained by *n*-alkanes series to the literature.

3. Results and Discussion

The volatile oil yield of *L. serriola* was 0.03% (v/w). Forty-three constituents were identified in oil (84.3%). Heneicosane (8.4%), (*E*)- β -ionone (6.5%), hexadecanoic acid (6.4%), hexahydrofarnesyl acetone (6.3%), tricosane (5.5%), heptacosane (5.5%), phytol (5.0%) and pentacosane (4.1%) were determined as main compounds in the oil. The oil has saturated *n*-alkane derivatives as a dominant group. Other major groups were fatty acid and esters (13.6%) and sesquiterpenoid (9.9%).

Abundance

1: (*E*)-β-ionone; 2: Heneicosane; 3: Hexahydrofarnesyl acetone; 4: Tricosane; 5: Pentacosane; 6: Phytol; 7: Heptacosane; 8: Hexadecanoic acid.

No RT¹ **RRI**² RRI Lit.³ Compound I⁴ (%) 1 24.971 1396 1400 Nonanal 1.7 2 28.788 1502 1506 Decanal 0.4 3 30.075 1541 0.3 1547 (E)-2-Nonenal 4 30.578 1556 1562 1-Octanol 0.4 5 32.930 1630 1638 β-Cyclocitral 0.5 6 33.532 1650 1655 (E)-2-Decanal 0.6 7 33.791 1659 1665 1-Nonanol 0.8 8 34.434 1680 1687 Estragole 1.6 9 35.184 1705 1705 γ-Himachalene 1.1 10 35.988 1733 1737 β-Bisabolene 0.4 11 36.731 1759 1765 (E)-2-Undecanal 1.1 12 38.443 1820 1827 (E,E)-2,4-Decadienal 1.4 13 38.765 2.0 1832 1835 β-Damascenone 14 39.540 1861 1868 1.6 Trans-geranyl acetone 41.897 15 1951 1958 (E)-β-ionone 6.5 16 42.288 1973 Dodecanol 0.8 1966 17 44.001 2035 2041 Pentadecanal 1.3 18 45.197 2084 2100 Zingiberonol 1.6 19 45.583 2099 2100 8.4 **Heneicosan**e 20 46.310 2130 2131 Hexahydrofarnesyl acetone 6.3 21 47.735 0.9 2191 2179 1-Tetradecanol 22 47.935 2200 2200 Docosane 1.3 23 48.415 2221 2226 Hexadecanoic acid methyl ester 0.6 24 49.245 2258 2262 Hexadecanoic acid ethyl ester 1.1 25 49.631 2275 2296 Decanoic acid 1.0 26 49.904 2287 2299 Isophytol 0.3 27 50.189 2300 2300 **Tricosan**e 5.5 28 50.505 2313 2315 2,4-bis(tert-butyl)-phenol 1.0 29 51.874 2371 2380 Hexylcinnamic aldehyde 0.2 30 52.103 2380 2384 Farnesyl acetone 2.0 31 52.580 2400 2400 1.6 Tetracosane 32 54.972 2486 2492 Dodecanoic acid 1.0

Table 1. The chemical composition of the volatile oil of Lactuca serriola

33

aurum

				Total	84.3
				Others	10.2
				Sesquiterpene	1.5
				Monoterpenoid	4.1
				Diterpene	5.3
				Sesquiterpenoid	9.9
				Fatty acid and esters	13.6
				n-alkane derivatives	39.7
43	73.216	2910	2931	Hexadecanoic acid	6.4
42	66.408	2773	2783	1-Docosanol	1.2
41	63.061	2701	2700	Heptacosan e	5.5
40	62.915	2698	2713	Tetradecanoic acid	1.1
39	59.382	2614	2622	Phytol	5.0
38	58.901	2602	2613	Ethyl linolenate	1.8
37	58.308	2585	2594	9-Hexacosene	1.9
36	57.526	2562	2582	Eicosanal	0.5
35	57.142	2551	2592	Diisobutyl phthalate	0.9
34	56.494	2532	2538	Linoleic acid ethyl ester	0.6

¹RT: Retention time; ²RRI: Relative retention time; ³RRI Lit.: Relative retention time in the literature; ⁴The analysis results.

According to a study from Saudi Arabia, L. serriola essential oil was reported to contain sesquisabinene hydrate, thunbergol and globulol as main compounds (Elsharkawy et al., 2014). Isoshyobunone, isocembrol, and alloaromadendrene oxide were detected in higher quantity in the essential oil of L. serriola from Egypt (Abd-ElGawad et al., 2019). Another study from Saudi Arabia, α -pinene, limonene, germacrene D, trans- β caryophyllene, caryophyllene oxide, and santolina triene were found as main compounds in the essential oil of leaves of L. serriola (Elsharkawy and Alshathly, 2013). The previous reports indicated that L. serriola had sesquiterpenoid, diterpene and oxygenated monoterpene as major groups. In the current study, the aerial part essential oil of L. serriola had n-alkane derivatives, fatty acid, and esters as dominant groups and showed a dissimilar chemical profile from the previous studies. Sesquiterpenoids were a common major group in present study, similar to previous studies. In the present study, hexahydrofarnesyl acetone was found as the main compound in the sesquiterpenoid group. Also, this compound was detected in the Egypt sample (1.77%) (Abd-ElGawad et al., 2019). However, there is quantitative dissimilarity in the main compound of the sesquiterpenoid group of volatile oil from Turkey and Egypt samples. In the current study, phytol was found as the main compound in the diterpene group. But this compound was not determined in previous studies. The difference may be correlated with the geographical region, collection time and specific climate conditions.

Conclusion

The chemical composition of the essential oil of *L. serriola* from Turkey was determined. The current research revealed that *L. serriola* oil was rich in *n*-alkane derivatives and showed variations in the main compounds due to geographical regions compared to previous studies.

Conflict of Interests

The authors declare no conflict of interest.

References

Abd-ElGawad, A. M., Elshamy, A. I., El-Nasser El Gendy, A., Al-Rowaily, S. L., Assaeed, A. M. (2019). Preponderance of oxygenated sesquiterpenes and diterpenes in the volatile oil constituents of *Lactuca serriola* L. revealed antioxidant and allelopathic activity. Chemistry & Biodiversity, 16(8), 1-9.

Altintas, A., Kosar, M., Kirimer, N., Baser, K. H. C., Demirci, B. (2006). Composition of the essential oils of *Lycium barbarum* and *L. ruthenicum* fruits. Chemistry of Natural Compounds, 42(1), 24-25.

Balogun, S. T., Stephenson, C., Oluwasoji, A., Akanmu, S. G., Jibrin, J. Antipseudomonal activity of aqueous and methanolic leaf extracts of *Lactuca serriola* Linn. (Astereceae). Journal of Chemistry and Chemical Engineering, 8, 157-162.

Başer, K. H. C., Özek, T., Demirci, B., Duman, H. (2000). Composition of the essential oil of *Glaucosciadium cordifolium* (Boiss.) Burtt et Davis from Turkey. Flavour and Fragrance Journal, 15(1), 45-46.

Başer, K. H. C., Demirci, B., Tabanca, N., Özek, T., Gören, N. (2001). Composition of the essential oils of *Tanacetum armenum* (DC.) Schultz Bip., *T. balsamita* L., *T. chiliophyllum* (Fisch. & Mey.) Schultz Bip. var. *chiliophyllum* and *T. haradjani* (Rech. fil.) Grierson and the enantiomeric distribution of camphor and carvone. Flavour and Fragrance Journal, 16(3), 195-200.

Baser, K. H. C., Demirci, B., Özek, T., Akalin, E., Özhatay, N. (2002). Micro-distilled volatile compounds from *Ferulago* species growing in western Turkey. Pharmaceutical Biology, 40(6), 466-471.

Davis, P. H. (1975). Flora of Turkey and the East Aegean Islands. Vol. 5. Edinburgh: University of Edinburgh Press, 295-311.

Demirci, B., Başer, K. H. C., Tümen, G. (2002). Composition of the essential oil of *Salvia aramiensis* Rech. fil. growing in Turkey. Flavour and Fragrance Journal, 17(1), 23-25.

Demirci, B., Baser, K. H. C., Dadandi, M. Y. (2006). Composition of the essential oils of *Phlomis rigida* Labill. and *P. samia* L. Journal of Essential Oil Research, 18(3), 328-331.

Demirci, B., Yasdikcioglu, G. K., Baser, K. H. C. (2013). Sesquiterpene hydrocarbons of the essential oil of *Actinolema macrolema* Boiss. Turkish Journal of Chemistry, 37(6), 917-926.

aurum

Dogan, Y., Baslar, S., Ay, G., Mert, H. H. (2004). The use of wild edible plants in western and central Anatolia (Turkey). Economic Botany, 58(4), 684-690.

Elsharkawy, E., Alshathly, M. (2013). Anticancer activity of *Lactuca steriolla* growing under dry desert condition of Northern Region in Saudi Arabia. J Nat Sci, 3(2), 5-18.

Elsharkawy, E., Alshathly, M., Helal, M. (2014). Anti-inflammatory and chemical composition of two plants family Asteraceae growing in Saudi Arabia. J Chem Chem Eng, 8(2), 157-162.

Erdemoglu, N., Sener, B., Demirci, B., Baser, K. H. C. (2003). The glycosidically bound volatile compounds of *Taxus baccata*. Chemistry of Natural Compounds, 39(2), 195-198.

Janbaz, K. H., Latif, M. F., Saqib, F., Imran, I., Zia-Ul-Haq, M., De Feo, V. (2013). Pharmacological effects of *Lactuca serriola* L. in experimental model of gastrointestinal, respiratory, and vascular ailments. Evidence-Based Complementary and Alternative Medicine, 1-9. Doi: 10.1155/2013/304394

Kaya, A., Başer, K. H. C., Koca, F. (1999). Essential oils of *Acinos troodi* (Post) Leblebici subsp. *vardaranus* Leblebici and subsp. *grandiflorus* Hartvig & Strid. Flavour and Fragrance Journal, 14(1), 50-54.

Kirimer, N., Tabanca, N., Özek, T., Tümen, G., Baser, K. H. C. (2000). Essential oils of annual *Sideritis* species growing in Turkey. Pharmaceutical Biology, 38(2), 106-111.

Kürkçüoğlu, M., Demirci, B., Tabanca, N., Özek, T., Başer, K. H. C. (2003). The essential oil of *Achillea falcata* L. Flavour and Fragrance Journal, 18(3), 192-194.

Mojab, F., Kamalinejad, M., Ghaderi, N., Vahidipour, H. R. (2010). Phytochemical screening of some species of Iranian plants. Iranian Journal of Pharmaceutical Research, 2, 77-82.

Moronkola, D. O., Ogunwande, I. A., Başer, K. H. C., Ozek, T., Ozek, G. (2009). Essential oil composition of *Gmelina arborea* Roxb., Verbenaceae, from Nigeria. Journal of Essential Oil Research, 21(3), 264-266.

Paolini, J., Tomi, P., Bernardini, A. F., Bradesi, P., Casanova, J., Kaloustian, J. (2008). Detailed analysis of the essential oil from *Cistus albidus* L. by combination of GC/RI, GC/MS and ¹³C-NMR spectroscopy. Natural Product Research, 22(14), 1270-1278. Doi: 10.1080/14786410701766083

Polatoglu, K., Sen, A., Bulut, G., Bitis, L., Gören, N. (2014). Essential oil composition of *Centaurea stenolepis* Kerner from Turkey. Journal of Essential Oil Bearing Plants, 17(6), 1268-1278.

Polatoğlu, K., Servi, H., Özçınar, Ö., Nalbantsoy, A., Gücel, S. (2017). Essential oil composition of endemic *Arabis purpurea* Sm. & *Arabis cypria* Holmboe (Brassicaceae) from Cyprus. Journal of Oleo Science, 1-6. Doi: 10.5650/jos.ess16011

Tabanca, N., Demirci, B., Ozek, T., Kirimer, N., Baser, K. H. C., Bedir, E., Wedge, D. E. (2006). Gas chromatographicmass spectrometric analysis of essential oils from *Pimpinella* species gathered from Central and Northern Turkey. Journal of Chromatography A, 1117(2), 194-205. Chemical Composition of Essential Oil From Aerial Parts of Lactuca serriola L.

Tuzlacı E. (2016). Türkiye Bitkileri Geleneksel İlaç Rehberi, 1st Ed., Istanbul Tıp Kitabevleri.

Viegas, M. C., Bassoli, D. G. (2007). Linear retention index for characterization of volatile compounds in soluble coffee using GC-MS and HP-Innowax column. Química Nova, 30(8), 2031-2034.