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ABSTRACT: Object detection and classification are among the most popular topics in Photogrammetry and Remote 
Sensing studies. With technological developments, a large number of high-resolution satellite images have been obtained 
and it has become possible to distinguish many different objects. Despite all these developments, the need for human 

intervention in object detection and classification is seen as one of the major problems. Machine learning has been used as 
a priority option to this day to reduce this need. Although success has been achieved with this method, human intervention 
is still needed. Deep learning provides a great convenience by eliminating this problem.  Deep learning methods carry out 
the learning process on raw data unlike traditional machine learning methods. Although deep learning has a long history, 
the main reasons for its increased popularity in recent years are; the availability of sufficient data for the training process 
and the availability of hardware to process the data. In this study, a performance comparison was made between two 
different convolutional neural network architectures (SegNet and Fully Convolutional Networks (FCN)) which are used 
for object segmentation and classification on images. These two different models were trained using the same training 

dataset and their performances have been evaluated using the same test dataset. The results show that, for building 
segmentation, there is not much significant difference between these two architectures in terms of accuracy, but FCN 
architecture is more successful than SegNet by 1%. However, this situation may vary according to the dataset used during 
the training of the system. 
 
Keywords: Photogrammetry, Deep Learning, Feature Extraction, SegNet, Fully Convolutional Networks 

 

 

 

 

 

 

 

 

 
 

 

 

 

mailto:iyilmaz@aku.edu.tr
mailto:iyilmaz@aku.edu.tr


   International Journal of Engineering and Geosciences 

(IJEG),   

   Vol; 5, Issue; 3, pp. 138-143, October, 2020,    

 

139 

 

1. INTRODUCTION 
 

Building detection from remote sensing and 
photogrammetric images has been one of the most 
challenging tasks with important development and 
research efforts during recent years (Vakalopoulou et al., 
2015). In remote sensing field, applications such as urban 
planning, land cover/use analysis and automatic 
generation or updating of the maps, along with the 
detection of buildings, are long-standing problems (Wu et 

al., 2018a). 
Buildings, which are the most significant places for 

human life, are key elements in the mapping of urban 
areas (Chen et al., 2019). Due to the rapid changes in 
urban areas, it is important to create and update the 
location information of buildings (Wu et al., 2018b). 
Remote sensing has been an effective technology for 
accurate detection and mapping of buildings due to its 

capability for high-resolution imaging over large areas 
and advantages of fast and high accuracy data acquisition 
(Chen et al., 2019, Comert et al., 2019). Unfortunately, 
automatic building detection on aerial images is usually 
limited by the inadequate detection and segmentation 
accuracy (Chen et al., 2019). Most tasks still require great 
amounts of manual interventions by experts. 

In recent years, as a consequence of the developments 

of imaging sensors and corresponding platforms, a rapid 
increase in the availability and accessibility of very high-
resolution (VHR) remote sensing images has made this 
problem more and more urgent (Ma et al., 2017). In the 
literature, satellite images have been used widely for the 
classification of urban areas (Sevgen, 2019). Building 
extraction from satellite and aerial images is not an easy 
task because of complex backgrounds, different lightning 

conditions and external factors that reduce visibility or 
separability of buildings (Akbulut et al., 2018). 

Recent progress in the field of computer vision (CV) 
indicates that, with the help of sufficient computing 
power and large training datasets (Cordts et al., 2016; 
Deng et al., 2009; Everingham et al., 2010; Lin et al., 
2014), deep learning methods such as Convolutional 
Neural Networks (CNNs) (LeCun et al., 1989) can 
considerably improve the performance of object detection 

and segmentation tasks from high-resolution imagery (He 
et al., 2016; Krizhevsky et al., 2012). Neural networks can 
deal with complex problems to reach accurate solutions 
(Tasdemir & Ozkan, 2019). This situation strongly 
indicates that deep learning will play a critical role in 
promoting the accuracy of building segmentation toward 
practical applications of automatic mapping of features 
(Chen et al., 2019). 

Since AlexNet overwhelmingly won the ImageNet 
Large-Scale Visual Recognition Challenge 2012 
(LSVRC-2012) (URL-1), CNN-based algorithms have 
become the go-to standard in many computer vision tasks, 
such as image classification, object detection, and image 
segmentation (Wu et al., 2018a). In the beginning, 
researchers mainly applied patch-based CNN methods to 
detecting, classifying or segmenting buildings in aerial or 

satellite images and significantly improved the 
performances (Guo e al., 2016). However, as a result of 
extreme memory costs and low computational efficiency, 
Fully Convolutional Networks (FCNs) have eventually 
attracted more attention in this area (Wu et al., 2018a). 

In this study, a comparison was made between 
SegNet and Fully Convolutional Networks (FCN) 

architectures. Inria Aerial Image Labeling Dataset which 
consists of 180 training images (with corresponding 

labels) and 180 test images was used. Two different 
models that use these architectures were trained using the 
prepared dataset and their performances have been 
evaluated. The creation of models and object 
segmentation processes were performed on the Python 
environment on Google Colab. 

 

2. DATASET AND METHODOLOGY  

 

2.1 Dataset 
 

Dataset selected to be used is “Inria Aerial Image 
Labeling Dataset” (Maggiori et al., 2017). This dataset 
features: 

 

 Coverage of 810 km² (405 km² for the training 

set and 405 km² for the testing set), 

 Aerial (in color and orthorectified) imagery 

with a spatial resolution of 30 cm, 

 Label images for two semantic classes: 
building and not building) (Maggiori et al., 
2017). 

 
The images from the dataset cover dissimilar urban 

settlements, differing from densely populated areas (e.g., 

Vienna) to less dense rural areas (e.g., Austrian Tyrol) 
(Fig 1) (Maggiori et al., 2017). The purpose of this is to 
improve the generalization power of the models 
(Maggiori et al., 2017). For example, while Chicago 
imagery may be used for training, the model should label 
images over other regions with varying conditions, urban 
landscape and time of the year (Maggiori et al., 2017). 

 

 
 

Figure.1 Chicago - 5 sample image and corresponding 
label image (Maggiori et al., 2017) 

 
In this study, only images from the training set were 

used. It is not possible to make comparisons between 
label images and predictions since there are no 
corresponding label images in the test set. 

The training set contains 180 color images of size 

5000×5000, covering a surface of 1500 m×1500 m each 
(Maggiori et al., 2017). There are 36 tiles for each of the 
following regions: 
 

 Austin (TX, USA) 

 Chicago (IL, USA) 

 Kitsap County (WA, USA) 

 Vienna (Austria) 

 Western Tyrol (Austria) (Maggiori et al., 2017) 
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The format of the images is GeoTIFF. The pixels of 
label images have value 255 for building class and 0 for 

not building class (Maggiori et al., 2017). 
To prepare the datasets for training and testing of the 

models, images from the training set and their 
corresponding label images were selected and divided 
into patches of size 224x224 pixels to reduce the 
computational cost and not lose resolution with resizing 
of images. Since the used architectures work with images 
in this size, images were prepared in size of 224x224. 

To create the training dataset, 5 images and their 
corresponding label images were selected (Austin9, 
Chicago25, Kitsap18, Tyrol_w21 and Vienna15). For the 
test dataset, another 5 images were selected (Austin1, 
Chicago2, Kitsap30, Tyrol_w29 and Vienna9). During 
these selections, the distribution of rural and urban areas 
was considered. Images with no building or a low amount 
of buildings were removed from the datasets. 

Consequently, a total of 1500 images and label images for 
the training dataset and 300 images and label images for 
the test dataset were generated (Fig 2). 

 

 
 
Figure.2 Sample image and corresponding label image 
from training dataset 

 

2.2 Methodology 

 
SegNet and FCN neural network architectures 

were used to train models using prepared training 

dataset. 
 

2.2.1 SegNet 
 

SegNet is a CNN architecture developed at Machine 

Intelligence Lab. of the University of Cambridge to 
design more suitable deep learning algorithms for image 
segmentation tasks (Badrinarayanan et al., 2017). SegNet 
has an encoder network and a decoder network that works 
according to this encoder, followed by a pixel-wise 
classification layer (Bozkurt, 2018). 

Encoder network consists of 13 convolution layers, 
corresponding to the VGG16’s first 13 convolution layers, 

which is a pre-trained network for object classification 
(Badrinarayanan et al., 2017). As mentioned in 
Badrinarayanan et al., 2017, at this network, convolutions 
and max-pooling are performed. At the deepest encoder 
output, fully connected layers are eliminated to protect 
higher resolution feature maps. This significantly reduces 
the number of parameters in the SegNet encoder network 
compared to other architectures.  

Within the SegNet architecture, each encoder layer 
has its decoder layer (Badrinarayanan et al., 2017). Thus, 
the decoder network also has 13 layers (Badrinarayanan 
et al., 2017). The output of the last decoder layer produces 

probabilities of classes for each pixel, which feeds the 
classifier with probability values (Badrinarayanan et al., 

2017). Illustration of the SegNet architecture is shown in 
Fig 3. 

 

 
 

Figure.3 SegNet architecture (Du et al., 2018) 
 

2.2.2 Fully Convolutional Networks (FCN) 
 

Fully Convolutional Networks (FCNs) are being used 
for semantic segmentation of images, analysis of multi-
modal medical images and classification and 
segmentation of high-resolution and multispectral 

satellite images (Long et al., 2015). In 2015, Long et al. 
adapted modern classification networks (AlexNet, 
VGGNet and GoogLeNet) into FCNs and transfer their 
learned representations by fine-tuning to the 
segmentation task. After that, they defined a novel 
architecture that combines semantic information from a 
deep, coarse layer with appearance information from a 
shallow, fine layer to produce accurate and detailed 

comprehensive (URL-2) (Fig 4). 
 

 
 

Figure.4 FCN architecture (De Souza, 2017) 

 
FCNs built from locally connected convolutional, 

pooling and convolutional transpose layers (Long et al., 
2015). No dense layer is used in this architecture (URL-

3). The absence of dense layers makes it possible to feed 
the network in variable inputs (URL-3). An FCN has 2 
parts: 

 

 Downsampling path 

 Upsampling path (URL-4) 
 
As described in URL-4, downsampling path extract and 
interpret the context. The downsampling path consists of 
convolutional and max-pooling layers. Upsampling path 
enables precise localization of features. Upsampling path 
consists of convolutional, convolutional transpose and 
concatenate layers. Concatenation layers are used for skip 

connections. Skip connection is a type of connection that 
bypasses at least one layer. They are often used to transfer 
local information from the downsampling path to the 
upsampling path. 
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3. STUDY 

 

In this study, all training and testing processes were 
conducted on Google Colab. Google Colab is a free 
Jupyter notebook environment that allows users to use 
free Tesla K80 GPU. It runs in the cloud and stores its 
notebooks and data on Google Drive. 

 

3.1 Training and Testing 

 

To train the models, images loaded into the network. 
Thereafter, training dataset split according to an 85% / 
15% training/validation ratio, 1275 images and 225 
images respectively.  

For training, the “Adam” optimizer was used to 
update model parameters with a fixed learning rate of 
0.001. Both models were trained for 50 iterations with a 
batch size of 16 using the same hyperparameters. To 

calculate loss values, binary cross-entropy loss function 
was used. Changes in training accuracy and validation 
accuracy over 50 iterations are shown in Fig 5. 

 

 
(a) 

 

 
(b) 

 
Figure.5 Accuracy values over 50 iterations (a) FCN (b) 

SegNet 
 
To test the trained models, the test dataset that 

prepared separately from the training dataset was used.  

 

3. RESULTS 
 

The final accuracy results are shown in Fig 6. When 

the validation accuracy results examined it was seen that 
the model that uses FCN architecture has 94.39% training 
accuracy and 90.55% validation accuracy. On the other 
hand, the model that uses SegNet architecture has 95.49% 
training accuracy and 89.49% validation accuracy. FCN 

model is more accurate than the SegNet model by 1% 
according to validation accuracy results. 

When training and validation accuracies of the 
models were compared, it was been seen that the FCN 
model has higher validation accuracy and the SegNet 
model has higher training accuracy. 

 

 
 

Figure.6 Training and validation accuracy results of 
models 

 
When the differences between training and validation 

accuracies of the models examined, the model that uses 

SegNet architecture has a larger gap between them. This 
shows that the model’s performance on training data is 
ahead of validation data. For the model that uses FCN 
architecture, this gap is smaller and it shows that this 
model is more accurate than the SegNet model. 

Consequently, building segmentation was performed 
on the prepared test dataset using trained models. 
Examples from test, label and segmented images are 

shown in Fig 7 and 8. 
 

  
         Test Image                         Label Image 

  
                    FCN                SegNet 

 
Figure.7 Segmentation results for test image 81 
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         Test Image                         Label Image 

  
                    FCN                SegNet 
 
Figure.8 Segmentation results for test image 165 

 

4. CONCLUSIONS 

 
In this study, building segmentation from high-

resolution images using SegNet and FCN neural network 
architectures were realized. Comparisons between these 
architectures were made. Models were trained and tested 
using datasets prepared from images from Inria Aerial 
Image Labeling Dataset.  

It was observed that the model that uses FCN 
architecture gives more accurate results. It has higher 
accuracy and a smaller difference between training and 
validation accuracies. This can also be observed from the 
predicted segmentation results.  

Further studies could include more datasets and 
different neural network architectures to make 
comparisons. Dataset could be augmented with unused 

images from Inria Dataset. More data to train the models 
would increase their performances. For this study, default 
settings were used for hyperparameters. Hyperparameter 
tuning could be done to improve the performances of the 
models. This is because hyperparameter optimization is 
crucial to achieve maximum performance.  
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